FM-1976's picture
Update README.md
c06d405 verified
---
base_model: stabilityai/stablelm-zephyr-3b
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Intel/orca_dpo_pairs
language:
- en
license: other
tags:
- causal-lm
- openvino
- nncf
- 4-bit
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
model-index:
- name: stablelm-zephyr-3b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 46.08
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.16
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.17
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.49
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.51
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.15
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
name: Open LLM Leaderboard
---
This model is a quantized version of [`stabilityai/stablelm-zephyr-3b`](https://huggingface.co/stabilityai/stablelm-zephyr-3b) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel).
Please note: For commercial use, please refer to https://stability.ai/license.
### Model Description
StableLM Zephyr 3B is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on [MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
### Model Parameters
```
context window = 4096
model type = 3B
model params = 2.80 B
BOS token = 0 '<|endoftext|>'
EOS token = 0 '<|endoftext|>'
UNK token = 0 '<|endoftext|>'
PAD token = 0 '<|endoftext|>'
```
The tokenizer of this model supports `chat_templates`
### Usage
StableLM Zephyr 3B uses the following instruction format:
```
<|user|>
List 3 synonyms for the word "tiny"<|endoftext|>
<|assistant|>
1. Dwarf
2. Little
3. Petite<|endoftext|>
```
### Model Details
- Developed by: Stability AI
- Model type: StableLM Zephyr 3B model is an auto-regressive language model based on the transformer decoder architecture.
- Language(s): English
- Library: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
- Finetuned from model: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
- License: [StabilityAI Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE.md).
- Commercial License: to use this model commercially, please refer to https://stability.ai/license
- Contact: For questions and comments about the model, please email [email protected]
First make sure you have `optimum-intel` installed:
```bash
pip install openvino-genai==2024.4.0
pip install optimum-intel[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, AutoConfig
from threading import Thread
from transformers import TextIteratorStreamer
model_id = "FM-1976/stablelm-zephyr-3b-openvino-4bit"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
ov_model = OVModelForCausalLM.from_pretrained(
model_id = model_id,
device='CPU',
ov_config={"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""},
config=AutoConfig.from_pretrained(model_id)
)
# Generation with a prompt message
question = 'Explain the plot of Cinderella in a sentence.'
messages = [
{"role": "user", "content": question}
]
print('Question:', question)
#Credit to https://github.com/openvino-dev-samples/chatglm3.openvino/blob/main/chat.py
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
model_inputs = tokenizer.apply_chat_template(messages,
add_generation_prompt=True,
tokenize=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
return_tensors="pt")
generate_kwargs = dict(input_ids=model_inputs,
max_new_tokens=450,
temperature=0.1,
do_sample=True,
top_p=0.5,
repetition_penalty=1.178,
streamer=streamer)
t1 = Thread(target=ov_model.generate, kwargs=generate_kwargs)
t1.start()
for new_text in streamer:
new_text = new_text
print(new_text, end="", flush=True)
```