xlm-roberta model trained on ronec dataset, performing 95 f1-Macro on test set.

Test metric Results
test_f1_mac_ronec 0.9547659158706665
test_loss_ronec 0.16371206939220428
test_prec_mac_ronec 0.8663718700408936
test_rec_mac_ronec 0.8695588111877441
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-romanian-ner-ronec")
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-romanian-ner-ronec")

nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
example = "Numele meu este Amadeus Wolfgang și locuiesc în Berlin"

ner_results = nlp(example)
print(ner_results)

# [
#     {
#         'entity_group': 'PER',
#         'score': 0.9966806,
#         'word': 'Amadeus Wolfgang',
#         'start': 16,
#         'end': 32
#     },
#     {'entity_group': 'GPE',
#      'score': 0.99694663,
#      'word': 'Berlin',
#      'start': 48,
#      'end': 54
#      }
# ]
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.