See axolotl config
axolotl version: 0.6.0
# Original base model config
# base_model: Dans-DiscountModels/Meta-Llama-3.2-3B-ChatML
# Using smaller model instead
base_model: Emm9625/Llama-3.2-1B-chatml
# Original tokenizer config
# tokenizer_config: Dans-DiscountModels/Meta-Llama-3.2-3B-ChatML
# Using matching tokenizer for smaller model
tokenizer_config: Emm9625/Llama-3.2-1B-chatml
# Model loading configuration
load_in_8bit: false
load_in_4bit: false
strict: false
# Chat template configuration
chat_template: chatml
# Dataset configuration
datasets:
- path: mlabonne/FineTome-100k
split: train
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
# shards: 2
# shard_idx: 0
# test_datasets:
# - path: Emm9625/textwork-00-dedupe-0.75
# name: smol-constraints
# split: test
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# train_on_eos: turn
# shards: 5
# shard_idx: 0
# - path: Emm9625/textwork-00-dedupe-0.75
# name: smol-rewrite
# split: test
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# train_on_eos: turn
# shards: 5
# shard_idx: 0
# - path: Emm9625/textwork-00-dedupe-0.75
# name: smol-summarize
# split: test
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# train_on_eos: turn
# shards: 5
# shard_idx: 0
dataset_prepared_path: /notebooks/last_run_prepared
val_set_size: 0.00
output_dir: /tmp/meow/
hub_model_id: Emm9625/Finetome-1b_25-01-19
hub_strategy: checkpoint
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# Model configuration
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r: 128
lora_alpha: 256
lora_dropout:
# 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
# Unsloth optimizations
unsloth_cross_entropy_loss: true
unsloth_rms_norm: true
unsloth_rope: true
# Lora Optimizations
# unsloth_lora_mlp: true
# unsloth_lora_qkv: true
# unsloth_lora_o: true
# plugins:
# - axolotl.integrations.liger.LigerPlugin
# liger_rope: true
# liger_rms_norm: true
# liger_glu_activation: true
# liger_layer_norm: true
# liger_fused_linear_cross_entropy: true
# Training configuration
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
torch_compile: true
train_on_inputs: false
group_by_length: false
bf16: true
gradient_checkpointing: true
flash_attention: true
# Training monitoring
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_ratio: 0.10
weight_decay: 0.00
saves_per_epoch: 1
evals_per_epoch: 0
save_safetensors: true
wandb_project: Finetome-1b_25-01-19
logging_steps: 1
# Special tokens configuration
special_tokens:
eos_token: "<|im_end|>"
bos_token: "<|im_start|>"
fsdp:
fsdp_config:
Finetome-1b_25-01-19
This model is a fine-tuned version of Emm9625/Llama-3.2-1B-chatml on the mlabonne/FineTome-100k dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 158
- num_epochs: 1
Training results
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Emm9625/Finetome-1b_25-01-19
Base model
Emm9625/Llama-3.2-1B-chatml