ELITE / inference_global.py
csyxwei's picture
readme and new requirements
2e7bc51
import os
from typing import Optional, Tuple
import numpy as np
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from train_global import Mapper, th2image
from train_global import inj_forward_text, inj_forward_crossattention, validation
import torch.nn as nn
from datasets import CustomDatasetWithBG
def _pil_from_latents(vae, latents):
_latents = 1 / 0.18215 * latents.clone()
image = vae.decode(_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
ret_pil_images = [Image.fromarray(image) for image in images]
return ret_pil_images
def pww_load_tools(
device: str = "cuda:0",
scheduler_type=LMSDiscreteScheduler,
mapper_model_path: Optional[str] = None,
diffusion_model_path: Optional[str] = None,
model_token: Optional[str] = None,
) -> Tuple[
UNet2DConditionModel,
CLIPTextModel,
CLIPTokenizer,
AutoencoderKL,
CLIPVisionModel,
Mapper,
LMSDiscreteScheduler,
]:
# 'CompVis/stable-diffusion-v1-4'
local_path_only = diffusion_model_path is not None
vae = AutoencoderKL.from_pretrained(
diffusion_model_path,
subfolder="vae",
use_auth_token=model_token,
torch_dtype=torch.float16,
local_files_only=local_path_only,
)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
# Load models and create wrapper for stable diffusion
for _module in text_encoder.modules():
if _module.__class__.__name__ == "CLIPTextTransformer":
_module.__class__.__call__ = inj_forward_text
unet = UNet2DConditionModel.from_pretrained(
diffusion_model_path,
subfolder="unet",
use_auth_token=model_token,
torch_dtype=torch.float16,
local_files_only=local_path_only,
)
mapper = Mapper(input_dim=1024, output_dim=768)
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.__class__.__call__ = inj_forward_crossattention
shape = _module.to_k.weight.shape
to_k_global = nn.Linear(shape[1], shape[0], bias=False)
mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global)
shape = _module.to_v.weight.shape
to_v_global = nn.Linear(shape[1], shape[0], bias=False)
mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global)
mapper.load_state_dict(torch.load(mapper_model_path, map_location='cpu'))
mapper.half()
for _name, _module in unet.named_modules():
if 'attn1' in _name: continue
if _module.__class__.__name__ == "CrossAttention":
_module.add_module('to_k_global', mapper.__getattr__(f'{_name.replace(".", "_")}_to_k'))
_module.add_module('to_v_global', mapper.__getattr__(f'{_name.replace(".", "_")}_to_v'))
vae.to(device), unet.to(device), text_encoder.to(device), image_encoder.to(device), mapper.to(device)
scheduler = scheduler_type(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
vae.eval()
unet.eval()
image_encoder.eval()
text_encoder.eval()
mapper.eval()
return vae, unet, text_encoder, tokenizer, image_encoder, mapper, scheduler
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--token_index",
type=str,
default="full",
help="Selected index for word embedding.",
)
parser.add_argument(
"--global_mapper_path",
type=str,
required=True,
help="Path to pretrained global mapping network.",
)
parser.add_argument(
"--output_dir",
type=str,
default='outputs',
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--placeholder_token",
type=str,
default="S",
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--template",
type=str,
default="a photo of a {}",
help="Text template for customized genetation.",
)
parser.add_argument(
"--test_data_dir", type=str, default=None, required=True, help="A folder containing the testing data."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--suffix",
type=str,
default="object",
help="Suffix of save directory.",
)
parser.add_argument(
"--selected_data",
type=int,
default=-1,
help="Data index. -1 for all.",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for testing.",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
save_dir = os.path.join(args.output_dir, f'{args.suffix}_token{args.token_index}')
os.makedirs(save_dir, exist_ok=True)
vae, unet, text_encoder, tokenizer, image_encoder, mapper, scheduler = pww_load_tools(
"cuda:0",
LMSDiscreteScheduler,
diffusion_model_path=args.pretrained_model_name_or_path,
mapper_model_path=args.global_mapper_path,
)
train_dataset = CustomDatasetWithBG(
data_root=args.test_data_dir,
tokenizer=tokenizer,
size=512,
placeholder_token=args.placeholder_token,
template=args.template,
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=False)
for step, batch in enumerate(train_dataloader):
if args.selected_data > -1 and step != args.selected_data:
continue
batch["pixel_values"] = batch["pixel_values"].to("cuda:0")
batch["pixel_values_clip"] = batch["pixel_values_clip"].to("cuda:0").half()
batch["input_ids"] = batch["input_ids"].to("cuda:0")
batch["index"] = batch["index"].to("cuda:0").long()
print(step, batch['text'])
syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, vae, batch["pixel_values_clip"].device, 5,
token_index=args.token_index, seed=args.seed)
concat = np.concatenate((np.array(syn_images[0]), th2image(batch["pixel_values"][0])), axis=1)
Image.fromarray(concat).save(os.path.join(save_dir, f'{str(step).zfill(5)}_{str(args.seed).zfill(5)}.jpg'))