File size: 7,257 Bytes
0792c6b 2e7bc51 0792c6b 2e7bc51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
from typing import Optional, Tuple
import numpy as np
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from train_global import Mapper, th2image
from train_global import inj_forward_text, inj_forward_crossattention, validation
import torch.nn as nn
from datasets import CustomDatasetWithBG
def _pil_from_latents(vae, latents):
_latents = 1 / 0.18215 * latents.clone()
image = vae.decode(_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
ret_pil_images = [Image.fromarray(image) for image in images]
return ret_pil_images
def pww_load_tools(
device: str = "cuda:0",
scheduler_type=LMSDiscreteScheduler,
mapper_model_path: Optional[str] = None,
diffusion_model_path: Optional[str] = None,
model_token: Optional[str] = None,
) -> Tuple[
UNet2DConditionModel,
CLIPTextModel,
CLIPTokenizer,
AutoencoderKL,
CLIPVisionModel,
Mapper,
LMSDiscreteScheduler,
]:
# 'CompVis/stable-diffusion-v1-4'
local_path_only = diffusion_model_path is not None
vae = AutoencoderKL.from_pretrained(
diffusion_model_path,
subfolder="vae",
use_auth_token=model_token,
torch_dtype=torch.float16,
local_files_only=local_path_only,
)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
# Load models and create wrapper for stable diffusion
for _module in text_encoder.modules():
if _module.__class__.__name__ == "CLIPTextTransformer":
_module.__class__.__call__ = inj_forward_text
unet = UNet2DConditionModel.from_pretrained(
diffusion_model_path,
subfolder="unet",
use_auth_token=model_token,
torch_dtype=torch.float16,
local_files_only=local_path_only,
)
mapper = Mapper(input_dim=1024, output_dim=768)
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.__class__.__call__ = inj_forward_crossattention
shape = _module.to_k.weight.shape
to_k_global = nn.Linear(shape[1], shape[0], bias=False)
mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global)
shape = _module.to_v.weight.shape
to_v_global = nn.Linear(shape[1], shape[0], bias=False)
mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global)
mapper.load_state_dict(torch.load(mapper_model_path, map_location='cpu'))
mapper.half()
for _name, _module in unet.named_modules():
if 'attn1' in _name: continue
if _module.__class__.__name__ == "CrossAttention":
_module.add_module('to_k_global', mapper.__getattr__(f'{_name.replace(".", "_")}_to_k'))
_module.add_module('to_v_global', mapper.__getattr__(f'{_name.replace(".", "_")}_to_v'))
vae.to(device), unet.to(device), text_encoder.to(device), image_encoder.to(device), mapper.to(device)
scheduler = scheduler_type(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
vae.eval()
unet.eval()
image_encoder.eval()
text_encoder.eval()
mapper.eval()
return vae, unet, text_encoder, tokenizer, image_encoder, mapper, scheduler
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--token_index",
type=str,
default="full",
help="Selected index for word embedding.",
)
parser.add_argument(
"--global_mapper_path",
type=str,
required=True,
help="Path to pretrained global mapping network.",
)
parser.add_argument(
"--output_dir",
type=str,
default='outputs',
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--placeholder_token",
type=str,
default="S",
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--template",
type=str,
default="a photo of a {}",
help="Text template for customized genetation.",
)
parser.add_argument(
"--test_data_dir", type=str, default=None, required=True, help="A folder containing the testing data."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--suffix",
type=str,
default="object",
help="Suffix of save directory.",
)
parser.add_argument(
"--selected_data",
type=int,
default=-1,
help="Data index. -1 for all.",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for testing.",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
save_dir = os.path.join(args.output_dir, f'{args.suffix}_token{args.token_index}')
os.makedirs(save_dir, exist_ok=True)
vae, unet, text_encoder, tokenizer, image_encoder, mapper, scheduler = pww_load_tools(
"cuda:0",
LMSDiscreteScheduler,
diffusion_model_path=args.pretrained_model_name_or_path,
mapper_model_path=args.global_mapper_path,
)
train_dataset = CustomDatasetWithBG(
data_root=args.test_data_dir,
tokenizer=tokenizer,
size=512,
placeholder_token=args.placeholder_token,
template=args.template,
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=False)
for step, batch in enumerate(train_dataloader):
if args.selected_data > -1 and step != args.selected_data:
continue
batch["pixel_values"] = batch["pixel_values"].to("cuda:0")
batch["pixel_values_clip"] = batch["pixel_values_clip"].to("cuda:0").half()
batch["input_ids"] = batch["input_ids"].to("cuda:0")
batch["index"] = batch["index"].to("cuda:0").long()
print(step, batch['text'])
syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, vae, batch["pixel_values_clip"].device, 5,
token_index=args.token_index, seed=args.seed)
concat = np.concatenate((np.array(syn_images[0]), th2image(batch["pixel_values"][0])), axis=1)
Image.fromarray(concat).save(os.path.join(save_dir, f'{str(step).zfill(5)}_{str(args.seed).zfill(5)}.jpg')) |