LayoutLMv3-Finetuned-CORD_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1948
  • Precision: 0.9525
  • Recall: 0.9603
  • F1: 0.9564
  • Accuracy: 0.9648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.56 250 0.9568 0.7298 0.7844 0.7561 0.7992
1.3271 3.12 500 0.5239 0.8398 0.8713 0.8553 0.8858
1.3271 4.69 750 0.3586 0.8945 0.9207 0.9074 0.9300
0.3495 6.25 1000 0.2716 0.9298 0.9416 0.9357 0.9410
0.3495 7.81 1250 0.2331 0.9198 0.9356 0.9276 0.9474
0.1725 9.38 1500 0.2134 0.9379 0.9499 0.9438 0.9529
0.1725 10.94 1750 0.2079 0.9401 0.9513 0.9457 0.9605
0.1116 12.5 2000 0.1992 0.9554 0.9618 0.9586 0.9656
0.1116 14.06 2250 0.1941 0.9517 0.9588 0.9553 0.9631
0.0762 15.62 2500 0.1966 0.9503 0.9588 0.9545 0.9639
0.0762 17.19 2750 0.1951 0.9510 0.9588 0.9549 0.9626
0.0636 18.75 3000 0.1948 0.9525 0.9603 0.9564 0.9648

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results