2020-Q4-full_tweets
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9720
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2400000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.02 | 8000 | 2.2726 |
2.454 | 0.03 | 16000 | 2.1965 |
2.454 | 0.05 | 24000 | 2.1550 |
2.2713 | 0.07 | 32000 | 2.1327 |
2.2713 | 0.08 | 40000 | 2.1084 |
2.2285 | 0.1 | 48000 | 2.0920 |
2.2285 | 0.12 | 56000 | 2.0790 |
2.2116 | 0.13 | 64000 | 2.0766 |
2.2116 | 0.15 | 72000 | 2.0627 |
2.1857 | 0.17 | 80000 | 2.0600 |
2.1857 | 0.19 | 88000 | 2.0541 |
2.1716 | 0.2 | 96000 | 2.0404 |
2.1716 | 0.22 | 104000 | 2.0438 |
2.1594 | 0.24 | 112000 | 2.0344 |
2.1594 | 0.25 | 120000 | 2.0421 |
2.1584 | 0.27 | 128000 | 2.0309 |
2.1584 | 0.29 | 136000 | 2.0293 |
2.1426 | 0.3 | 144000 | 2.0262 |
2.1426 | 0.32 | 152000 | 2.0243 |
2.1494 | 0.34 | 160000 | 2.0235 |
2.1494 | 0.35 | 168000 | 2.0238 |
2.1466 | 0.37 | 176000 | 2.0158 |
2.1466 | 0.39 | 184000 | 2.0198 |
2.1389 | 0.4 | 192000 | 2.0098 |
2.1389 | 0.42 | 200000 | 2.0161 |
2.1312 | 0.44 | 208000 | 2.0185 |
2.1312 | 0.45 | 216000 | 2.0058 |
2.1404 | 0.47 | 224000 | 2.0143 |
2.1404 | 0.49 | 232000 | 2.0040 |
2.1385 | 0.51 | 240000 | 2.0060 |
2.1385 | 0.52 | 248000 | 2.0096 |
2.1356 | 0.54 | 256000 | 2.0073 |
2.1356 | 0.56 | 264000 | 2.0079 |
2.1297 | 0.57 | 272000 | 2.0068 |
2.1297 | 0.59 | 280000 | 2.0082 |
2.1319 | 0.61 | 288000 | 2.0070 |
2.1319 | 0.62 | 296000 | 2.0041 |
2.1296 | 0.64 | 304000 | 2.0038 |
2.1296 | 0.66 | 312000 | 2.0013 |
2.1289 | 0.67 | 320000 | 2.0043 |
2.1289 | 0.69 | 328000 | 2.0036 |
2.127 | 0.71 | 336000 | 2.0021 |
2.127 | 0.72 | 344000 | 2.0051 |
2.1244 | 0.74 | 352000 | 2.0006 |
2.1244 | 0.76 | 360000 | 2.0008 |
2.1271 | 0.77 | 368000 | 2.0028 |
2.1271 | 0.79 | 376000 | 2.0010 |
2.1258 | 0.81 | 384000 | 2.0008 |
2.1258 | 0.83 | 392000 | 1.9967 |
2.121 | 0.84 | 400000 | 2.0009 |
2.121 | 0.86 | 408000 | 1.9976 |
2.1288 | 0.88 | 416000 | 1.9993 |
2.1288 | 0.89 | 424000 | 1.9968 |
2.1358 | 0.91 | 432000 | 1.9999 |
2.1358 | 0.93 | 440000 | 1.9947 |
2.1339 | 0.94 | 448000 | 2.0011 |
2.1339 | 0.96 | 456000 | 2.0030 |
2.1256 | 0.98 | 464000 | 1.9871 |
2.1256 | 0.99 | 472000 | 1.9928 |
2.1304 | 1.01 | 480000 | 1.9876 |
2.1304 | 1.03 | 488000 | 1.9956 |
2.1224 | 1.04 | 496000 | 1.9979 |
2.1224 | 1.06 | 504000 | 1.9990 |
2.1274 | 1.08 | 512000 | 1.9970 |
2.1274 | 1.09 | 520000 | 1.9944 |
2.1215 | 1.11 | 528000 | 1.9924 |
2.1215 | 1.13 | 536000 | 1.9945 |
2.1246 | 1.15 | 544000 | 1.9916 |
2.1246 | 1.16 | 552000 | 1.9928 |
2.1305 | 1.18 | 560000 | 1.9927 |
2.1305 | 1.2 | 568000 | 1.9953 |
2.1204 | 1.21 | 576000 | 1.9892 |
2.1204 | 1.23 | 584000 | 1.9910 |
2.1171 | 1.25 | 592000 | 1.9920 |
2.1171 | 1.26 | 600000 | 1.9933 |
2.121 | 1.28 | 608000 | 1.9892 |
2.121 | 1.3 | 616000 | 1.9887 |
2.1238 | 1.31 | 624000 | 1.9917 |
2.1238 | 1.33 | 632000 | 1.9871 |
2.1235 | 1.35 | 640000 | 1.9852 |
2.1235 | 1.36 | 648000 | 1.9862 |
2.1266 | 1.38 | 656000 | 1.9866 |
2.1266 | 1.4 | 664000 | 1.9921 |
2.1236 | 1.41 | 672000 | 1.9807 |
2.1236 | 1.43 | 680000 | 1.9859 |
2.1278 | 1.45 | 688000 | 1.9925 |
2.1278 | 1.47 | 696000 | 1.9856 |
2.1116 | 1.48 | 704000 | 1.9882 |
2.1116 | 1.5 | 712000 | 1.9869 |
2.1128 | 1.52 | 720000 | 1.9819 |
2.1128 | 1.53 | 728000 | 1.9836 |
2.1208 | 1.55 | 736000 | 1.9819 |
2.1208 | 1.57 | 744000 | 1.9867 |
2.1248 | 1.58 | 752000 | 1.9893 |
2.1248 | 1.6 | 760000 | 1.9867 |
2.1181 | 1.62 | 768000 | 1.9826 |
2.1181 | 1.63 | 776000 | 1.9860 |
2.117 | 1.65 | 784000 | 1.9858 |
2.117 | 1.67 | 792000 | 1.9828 |
2.1203 | 1.68 | 800000 | 1.9846 |
2.1203 | 1.7 | 808000 | 1.9876 |
2.1219 | 1.72 | 816000 | 1.9816 |
2.1219 | 1.73 | 824000 | 1.9856 |
2.1226 | 1.75 | 832000 | 1.9833 |
2.1226 | 1.77 | 840000 | 1.9829 |
2.1218 | 1.79 | 848000 | 1.9870 |
2.1218 | 1.8 | 856000 | 1.9794 |
2.1207 | 1.82 | 864000 | 1.9860 |
2.1207 | 1.84 | 872000 | 1.9841 |
2.1173 | 1.85 | 880000 | 1.9851 |
2.1173 | 1.87 | 888000 | 1.9808 |
2.118 | 1.89 | 896000 | 1.9755 |
2.118 | 1.9 | 904000 | 1.9814 |
2.1085 | 1.92 | 912000 | 1.9834 |
2.1085 | 1.94 | 920000 | 1.9811 |
2.1213 | 1.95 | 928000 | 1.9837 |
2.1213 | 1.97 | 936000 | 1.9880 |
2.1254 | 1.99 | 944000 | 1.9802 |
2.1254 | 2.0 | 952000 | 1.9771 |
2.119 | 2.02 | 960000 | 1.9837 |
2.119 | 2.04 | 968000 | 1.9815 |
2.1217 | 2.05 | 976000 | 1.9791 |
2.1217 | 2.07 | 984000 | 1.9858 |
2.1196 | 2.09 | 992000 | 1.9823 |
2.1196 | 2.11 | 1000000 | 1.9849 |
2.1175 | 2.12 | 1008000 | 1.9832 |
2.1175 | 2.14 | 1016000 | 1.9795 |
2.1165 | 2.16 | 1024000 | 1.9848 |
2.1165 | 2.17 | 1032000 | 1.9813 |
2.1223 | 2.19 | 1040000 | 1.9791 |
2.1223 | 2.21 | 1048000 | 1.9791 |
2.1196 | 2.22 | 1056000 | 1.9724 |
2.1196 | 2.24 | 1064000 | 1.9779 |
2.1097 | 2.26 | 1072000 | 1.9785 |
2.1097 | 2.27 | 1080000 | 1.9842 |
2.109 | 2.29 | 1088000 | 1.9792 |
2.109 | 2.31 | 1096000 | 1.9804 |
2.1175 | 2.32 | 1104000 | 1.9811 |
2.1175 | 2.34 | 1112000 | 1.9813 |
2.1239 | 2.36 | 1120000 | 1.9742 |
2.1239 | 2.37 | 1128000 | 1.9759 |
2.1141 | 2.39 | 1136000 | 1.9835 |
2.1141 | 2.41 | 1144000 | 1.9814 |
2.1121 | 2.43 | 1152000 | 1.9753 |
2.1121 | 2.44 | 1160000 | 1.9796 |
2.1298 | 2.46 | 1168000 | 1.9720 |
2.1298 | 2.48 | 1176000 | 1.9822 |
2.1113 | 2.49 | 1184000 | 1.9772 |
2.1113 | 2.51 | 1192000 | 1.9779 |
2.1224 | 2.53 | 1200000 | 1.9760 |
2.1224 | 2.54 | 1208000 | 1.9823 |
2.1181 | 2.56 | 1216000 | 1.9836 |
2.1181 | 2.58 | 1224000 | 1.9754 |
2.1152 | 2.59 | 1232000 | 1.9764 |
2.1152 | 2.61 | 1240000 | 1.9771 |
2.1219 | 2.63 | 1248000 | 1.9774 |
2.1219 | 2.64 | 1256000 | 1.9790 |
2.115 | 2.66 | 1264000 | 1.9783 |
2.115 | 2.68 | 1272000 | 1.9829 |
2.1241 | 2.69 | 1280000 | 1.9844 |
2.1241 | 2.71 | 1288000 | 1.9781 |
2.1157 | 2.73 | 1296000 | 1.9808 |
2.1157 | 2.75 | 1304000 | 1.9820 |
2.1223 | 2.76 | 1312000 | 1.9812 |
2.1223 | 2.78 | 1320000 | 1.9811 |
2.1178 | 2.8 | 1328000 | 1.9779 |
2.1178 | 2.81 | 1336000 | 1.9761 |
2.1204 | 2.83 | 1344000 | 1.9772 |
2.1204 | 2.85 | 1352000 | 1.9724 |
2.1205 | 2.86 | 1360000 | 1.9777 |
2.1205 | 2.88 | 1368000 | 1.9721 |
2.1178 | 2.9 | 1376000 | 1.9768 |
2.1178 | 2.91 | 1384000 | 1.9802 |
2.1205 | 2.93 | 1392000 | 1.9759 |
2.1205 | 2.95 | 1400000 | 1.9817 |
2.1193 | 2.96 | 1408000 | 1.9788 |
2.1193 | 2.98 | 1416000 | 1.9770 |
2.1195 | 3.0 | 1424000 | 1.9769 |
2.1195 | 3.01 | 1432000 | 1.9848 |
2.1137 | 3.03 | 1440000 | 1.9747 |
2.1137 | 3.05 | 1448000 | 1.9745 |
2.12 | 3.07 | 1456000 | 1.9765 |
2.12 | 3.08 | 1464000 | 1.9776 |
2.123 | 3.1 | 1472000 | 1.9799 |
2.123 | 3.12 | 1480000 | 1.9737 |
2.1213 | 3.13 | 1488000 | 1.9775 |
2.1213 | 3.15 | 1496000 | 1.9783 |
2.1267 | 3.17 | 1504000 | 1.9806 |
2.1267 | 3.18 | 1512000 | 1.9764 |
2.1186 | 3.2 | 1520000 | 1.9695 |
2.1186 | 3.22 | 1528000 | 1.9783 |
2.1189 | 3.23 | 1536000 | 1.9774 |
2.1189 | 3.25 | 1544000 | 1.9781 |
2.1249 | 3.27 | 1552000 | 1.9740 |
2.1249 | 3.28 | 1560000 | 1.9787 |
2.1124 | 3.3 | 1568000 | 1.9799 |
2.1124 | 3.32 | 1576000 | 1.9734 |
2.1166 | 3.33 | 1584000 | 1.9763 |
2.1166 | 3.35 | 1592000 | 1.9798 |
2.1224 | 3.37 | 1600000 | 1.9741 |
2.1224 | 3.39 | 1608000 | 1.9781 |
2.1178 | 3.4 | 1616000 | 1.9705 |
2.1178 | 3.42 | 1624000 | 1.9754 |
2.1096 | 3.44 | 1632000 | 1.9738 |
2.1096 | 3.45 | 1640000 | 1.9785 |
2.1157 | 3.47 | 1648000 | 1.9745 |
2.1157 | 3.49 | 1656000 | 1.9788 |
2.1184 | 3.5 | 1664000 | 1.9739 |
2.1184 | 3.52 | 1672000 | 1.9722 |
2.1288 | 3.54 | 1680000 | 1.9729 |
2.1288 | 3.55 | 1688000 | 1.9782 |
2.1247 | 3.57 | 1696000 | 1.9772 |
2.1247 | 3.59 | 1704000 | 1.9759 |
2.1113 | 3.6 | 1712000 | 1.9696 |
2.1113 | 3.62 | 1720000 | 1.9751 |
2.124 | 3.64 | 1728000 | 1.9741 |
2.124 | 3.65 | 1736000 | 1.9780 |
2.1242 | 3.67 | 1744000 | 1.9777 |
2.1242 | 3.69 | 1752000 | 1.9724 |
2.1263 | 3.71 | 1760000 | 1.9775 |
2.1263 | 3.72 | 1768000 | 1.9779 |
2.1214 | 3.74 | 1776000 | 1.9786 |
2.1214 | 3.76 | 1784000 | 1.9770 |
2.1209 | 3.77 | 1792000 | 1.9809 |
2.1209 | 3.79 | 1800000 | 1.9754 |
2.1254 | 3.81 | 1808000 | 1.9769 |
2.1254 | 3.82 | 1816000 | 1.9782 |
2.1225 | 3.84 | 1824000 | 1.9799 |
2.1225 | 3.86 | 1832000 | 1.9781 |
2.1232 | 3.87 | 1840000 | 1.9752 |
2.1232 | 3.89 | 1848000 | 1.9749 |
2.1225 | 3.91 | 1856000 | 1.9787 |
2.1225 | 3.92 | 1864000 | 1.9765 |
2.118 | 3.94 | 1872000 | 1.9764 |
2.118 | 3.96 | 1880000 | 1.9767 |
2.1158 | 3.97 | 1888000 | 1.9775 |
2.1158 | 3.99 | 1896000 | 1.9775 |
2.1257 | 4.01 | 1904000 | 1.9750 |
2.1257 | 4.03 | 1912000 | 1.9756 |
2.122 | 4.04 | 1920000 | 1.9812 |
2.122 | 4.06 | 1928000 | 1.9753 |
2.1223 | 4.08 | 1936000 | 1.9788 |
2.1223 | 4.09 | 1944000 | 1.9773 |
2.1189 | 4.11 | 1952000 | 1.9798 |
2.1189 | 4.13 | 1960000 | 1.9724 |
2.1182 | 4.14 | 1968000 | 1.9813 |
2.1182 | 4.16 | 1976000 | 1.9821 |
2.118 | 4.18 | 1984000 | 1.9766 |
2.118 | 4.19 | 1992000 | 1.9779 |
2.1188 | 4.21 | 2000000 | 1.9700 |
2.1188 | 4.23 | 2008000 | 1.9783 |
2.1207 | 4.24 | 2016000 | 1.9744 |
2.1207 | 4.26 | 2024000 | 1.9800 |
2.1181 | 4.28 | 2032000 | 1.9769 |
2.1181 | 4.29 | 2040000 | 1.9770 |
2.1219 | 4.31 | 2048000 | 1.9745 |
2.1219 | 4.33 | 2056000 | 1.9719 |
2.1264 | 4.35 | 2064000 | 1.9766 |
2.1264 | 4.36 | 2072000 | 1.9753 |
2.1188 | 4.38 | 2080000 | 1.9752 |
2.1188 | 4.4 | 2088000 | 1.9787 |
2.1132 | 4.41 | 2096000 | 1.9755 |
2.1132 | 4.43 | 2104000 | 1.9824 |
2.1284 | 4.45 | 2112000 | 1.9788 |
2.1284 | 4.46 | 2120000 | 1.9768 |
2.1197 | 4.48 | 2128000 | 1.9800 |
2.1197 | 4.5 | 2136000 | 1.9771 |
2.1208 | 4.51 | 2144000 | 1.9769 |
2.1208 | 4.53 | 2152000 | 1.9770 |
2.1174 | 4.55 | 2160000 | 1.9727 |
2.1174 | 4.56 | 2168000 | 1.9772 |
2.1222 | 4.58 | 2176000 | 1.9709 |
2.1222 | 4.6 | 2184000 | 1.9768 |
2.1306 | 4.61 | 2192000 | 1.9721 |
2.1306 | 4.63 | 2200000 | 1.9730 |
2.1224 | 4.65 | 2208000 | 1.9756 |
2.1224 | 4.67 | 2216000 | 1.9703 |
2.1317 | 4.68 | 2224000 | 1.9788 |
2.1317 | 4.7 | 2232000 | 1.9760 |
2.1215 | 4.72 | 2240000 | 1.9795 |
2.1215 | 4.73 | 2248000 | 1.9747 |
2.1093 | 4.75 | 2256000 | 1.9798 |
2.1093 | 4.77 | 2264000 | 1.9734 |
2.1168 | 4.78 | 2272000 | 1.9769 |
2.1168 | 4.8 | 2280000 | 1.9767 |
2.1209 | 4.82 | 2288000 | 1.9758 |
2.1209 | 4.83 | 2296000 | 1.9794 |
2.1295 | 4.85 | 2304000 | 1.9806 |
2.1295 | 4.87 | 2312000 | 1.9778 |
2.1095 | 4.88 | 2320000 | 1.9740 |
2.1095 | 4.9 | 2328000 | 1.9753 |
2.1141 | 4.92 | 2336000 | 1.9768 |
2.1141 | 4.93 | 2344000 | 1.9744 |
2.1208 | 4.95 | 2352000 | 1.9785 |
2.1208 | 4.97 | 2360000 | 1.9829 |
2.1257 | 4.99 | 2368000 | 1.9744 |
2.1257 | 5.0 | 2376000 | 1.9829 |
2.1202 | 5.02 | 2384000 | 1.9729 |
2.1202 | 5.04 | 2392000 | 1.9804 |
2.1221 | 5.05 | 2400000 | 1.9803 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DouglasPontes/2020-Q4-full_tweets
Base model
cardiffnlp/twitter-roberta-base-2019-90m