DouglasPontes's picture
End of training
a7c86b1 verified
metadata
license: mit
base_model: cardiffnlp/twitter-roberta-base-2019-90m
tags:
  - generated_from_trainer
model-index:
  - name: 2020-Q4-75p-filtered-random
    results: []

2020-Q4-75p-filtered-random

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.07 8000 2.5786
2.8197 0.13 16000 2.4788
2.8197 0.2 24000 2.4343
2.5564 0.27 32000 2.4143
2.5564 0.34 40000 2.3826
2.4967 0.4 48000 2.3655
2.4967 0.47 56000 2.3450
2.476 0.54 64000 2.3501
2.476 0.61 72000 2.3315
2.4525 0.67 80000 2.3286
2.4525 0.74 88000 2.3278
2.445 0.81 96000 2.3187
2.445 0.88 104000 2.3113
2.438 0.94 112000 2.3129
2.438 1.01 120000 2.3161
2.4233 1.08 128000 2.3009
2.4233 1.15 136000 2.3072
2.4182 1.21 144000 2.3069
2.4182 1.28 152000 2.3060
2.418 1.35 160000 2.2963
2.418 1.41 168000 2.3017
2.4106 1.48 176000 2.2863
2.4106 1.55 184000 2.2871
2.4093 1.62 192000 2.2870
2.4093 1.68 200000 2.2845
2.4124 1.75 208000 2.2971
2.4124 1.82 216000 2.2833
2.4031 1.89 224000 2.2866
2.4031 1.95 232000 2.2833
2.4056 2.02 240000 2.2877
2.4056 2.09 248000 2.2789
2.4035 2.16 256000 2.2872
2.4035 2.22 264000 2.2771
2.4068 2.29 272000 2.2824
2.4068 2.36 280000 2.2681
2.4069 2.43 288000 2.2866
2.4069 2.49 296000 2.2838
2.4059 2.56 304000 2.2804
2.4059 2.63 312000 2.2757
2.3997 2.69 320000 2.2775
2.3997 2.76 328000 2.2693
2.4025 2.83 336000 2.2751
2.4025 2.9 344000 2.2686
2.399 2.96 352000 2.2784
2.399 3.03 360000 2.2782
2.3953 3.1 368000 2.2694
2.3953 3.17 376000 2.2638
2.4002 3.23 384000 2.2785
2.4002 3.3 392000 2.2785
2.4035 3.37 400000 2.2774
2.4035 3.44 408000 2.2736
2.3985 3.5 416000 2.2808
2.3985 3.57 424000 2.2672
2.3996 3.64 432000 2.2765
2.3996 3.71 440000 2.2748
2.4052 3.77 448000 2.2647
2.4052 3.84 456000 2.2776
2.4025 3.91 464000 2.2734
2.4025 3.97 472000 2.2588
2.4082 4.04 480000 2.2724
2.4082 4.11 488000 2.2740
2.3993 4.18 496000 2.2726
2.3993 4.24 504000 2.2827
2.4029 4.31 512000 2.2728
2.4029 4.38 520000 2.2833
2.407 4.45 528000 2.2636
2.407 4.51 536000 2.2689
2.4039 4.58 544000 2.2741
2.4039 4.65 552000 2.2715
2.3983 4.72 560000 2.2805
2.3983 4.78 568000 2.2744
2.3974 4.85 576000 2.2678
2.3974 4.92 584000 2.2723
2.388 4.99 592000 2.2655
2.388 5.05 600000 2.2716
2.3921 5.12 608000 2.2771
2.3921 5.19 616000 2.2760
2.3963 5.25 624000 2.2806
2.3963 5.32 632000 2.2697
2.3891 5.39 640000 2.2705
2.3891 5.46 648000 2.2708
2.3968 5.52 656000 2.2689
2.3968 5.59 664000 2.2651
2.3951 5.66 672000 2.2766
2.3951 5.73 680000 2.2717
2.3986 5.79 688000 2.2629
2.3986 5.86 696000 2.2624
2.3985 5.93 704000 2.2693
2.3985 6.0 712000 2.2632
2.4009 6.06 720000 2.2715
2.4009 6.13 728000 2.2654
2.4015 6.2 736000 2.2700
2.4015 6.27 744000 2.2673
2.3927 6.33 752000 2.2701
2.3927 6.4 760000 2.2666
2.3941 6.47 768000 2.2585
2.3941 6.53 776000 2.2679
2.393 6.6 784000 2.2624
2.393 6.67 792000 2.2706
2.4025 6.74 800000 2.2785
2.4025 6.8 808000 2.2658
2.3992 6.87 816000 2.2557
2.3992 6.94 824000 2.2581
2.4055 7.01 832000 2.2725
2.4055 7.07 840000 2.2608
2.3965 7.14 848000 2.2717
2.3965 7.21 856000 2.2643
2.4028 7.28 864000 2.2697
2.4028 7.34 872000 2.2691
2.3943 7.41 880000 2.2628
2.3943 7.48 888000 2.2630
2.3918 7.55 896000 2.2691
2.3918 7.61 904000 2.2778
2.3897 7.68 912000 2.2577
2.3897 7.75 920000 2.2690
2.3996 7.81 928000 2.2631
2.3996 7.88 936000 2.2606
2.4016 7.95 944000 2.2742
2.4016 8.02 952000 2.2705
2.3989 8.08 960000 2.2694
2.3989 8.15 968000 2.2676
2.3989 8.22 976000 2.2659
2.3989 8.29 984000 2.2676
2.3995 8.35 992000 2.2752
2.3995 8.42 1000000 2.2760
2.3958 8.49 1008000 2.2779
2.3958 8.56 1016000 2.2626
2.3962 8.62 1024000 2.2646
2.3962 8.69 1032000 2.2645
2.3966 8.76 1040000 2.2603
2.3966 8.83 1048000 2.2549
2.3934 8.89 1056000 2.2669
2.3934 8.96 1064000 2.2576
2.3918 9.03 1072000 2.2707
2.3918 9.09 1080000 2.2618
2.401 9.16 1088000 2.2680
2.401 9.23 1096000 2.2721
2.3938 9.3 1104000 2.2637
2.3938 9.36 1112000 2.2657
2.3982 9.43 1120000 2.2576
2.3982 9.5 1128000 2.2633
2.4006 9.57 1136000 2.2668
2.4006 9.63 1144000 2.2660
2.3971 9.7 1152000 2.2659
2.3971 9.77 1160000 2.2723
2.4004 9.84 1168000 2.2627
2.4004 9.9 1176000 2.2708
2.3903 9.97 1184000 2.2576
2.3903 10.04 1192000 2.2625
2.3909 10.11 1200000 2.2543
2.3909 10.17 1208000 2.2595
2.4004 10.24 1216000 2.2561
2.4004 10.31 1224000 2.2607
2.3964 10.37 1232000 2.2606
2.3964 10.44 1240000 2.2635
2.4007 10.51 1248000 2.2623
2.4007 10.58 1256000 2.2696
2.3993 10.64 1264000 2.2700
2.3993 10.71 1272000 2.2731
2.4048 10.78 1280000 2.2701
2.4048 10.85 1288000 2.2701
2.3936 10.91 1296000 2.2706
2.3936 10.98 1304000 2.2596
2.3951 11.05 1312000 2.2812
2.3951 11.12 1320000 2.2523
2.39 11.18 1328000 2.2596
2.39 11.25 1336000 2.2723
2.393 11.32 1344000 2.2696
2.393 11.39 1352000 2.2614
2.3915 11.45 1360000 2.2687
2.3915 11.52 1368000 2.2567
2.405 11.59 1376000 2.2717
2.405 11.65 1384000 2.2733
2.3898 11.72 1392000 2.2680
2.3898 11.79 1400000 2.2627
2.3956 11.86 1408000 2.2689
2.3956 11.92 1416000 2.2669
2.4041 11.99 1424000 2.2610
2.4041 12.06 1432000 2.2689
2.3968 12.13 1440000 2.2749
2.3968 12.19 1448000 2.2640
2.4048 12.26 1456000 2.2602
2.4048 12.33 1464000 2.2698
2.4025 12.4 1472000 2.2545
2.4025 12.46 1480000 2.2685
2.3977 12.53 1488000 2.2623
2.3977 12.6 1496000 2.2679
2.3965 12.67 1504000 2.2505
2.3965 12.73 1512000 2.2708
2.3945 12.8 1520000 2.2655
2.3945 12.87 1528000 2.2672
2.3957 12.93 1536000 2.2698
2.3957 13.0 1544000 2.2661
2.3951 13.07 1552000 2.2635
2.3951 13.14 1560000 2.2597
2.4005 13.2 1568000 2.2575
2.4005 13.27 1576000 2.2648
2.394 13.34 1584000 2.2746
2.394 13.41 1592000 2.2722
2.4016 13.47 1600000 2.2567
2.4016 13.54 1608000 2.2599
2.392 13.61 1616000 2.2588
2.392 13.68 1624000 2.2644
2.3936 13.74 1632000 2.2668
2.3936 13.81 1640000 2.2447
2.3954 13.88 1648000 2.2502
2.3954 13.95 1656000 2.2737
2.3901 14.01 1664000 2.2701
2.3901 14.08 1672000 2.2632
2.3963 14.15 1680000 2.2661
2.3963 14.21 1688000 2.2628
2.4005 14.28 1696000 2.2606
2.4005 14.35 1704000 2.2578
2.3877 14.42 1712000 2.2674
2.3877 14.48 1720000 2.2631
2.3958 14.55 1728000 2.2675
2.3958 14.62 1736000 2.2752
2.3858 14.69 1744000 2.2623
2.3858 14.75 1752000 2.2577
2.403 14.82 1760000 2.2512
2.403 14.89 1768000 2.2610
2.3969 14.96 1776000 2.2597
2.3969 15.02 1784000 2.2748
2.4016 15.09 1792000 2.2632
2.4016 15.16 1800000 2.2650
2.4018 15.23 1808000 2.2669
2.4018 15.29 1816000 2.2525
2.3954 15.36 1824000 2.2497
2.3954 15.43 1832000 2.2744
2.396 15.49 1840000 2.2673
2.396 15.56 1848000 2.2637
2.3951 15.63 1856000 2.2615
2.3951 15.7 1864000 2.2644
2.4017 15.76 1872000 2.2656
2.4017 15.83 1880000 2.2682
2.3962 15.9 1888000 2.2592
2.3962 15.97 1896000 2.2643
2.3996 16.03 1904000 2.2648
2.3996 16.1 1912000 2.2706
2.3994 16.17 1920000 2.2700
2.3994 16.24 1928000 2.2627
2.3976 16.3 1936000 2.2592
2.3976 16.37 1944000 2.2606
2.3971 16.44 1952000 2.2588
2.3971 16.51 1960000 2.2607
2.3991 16.57 1968000 2.2692
2.3991 16.64 1976000 2.2548
2.3952 16.71 1984000 2.2572
2.3952 16.77 1992000 2.2626
2.4002 16.84 2000000 2.2680
2.4002 16.91 2008000 2.2690
2.3937 16.98 2016000 2.2523
2.3937 17.04 2024000 2.2700
2.3999 17.11 2032000 2.2652
2.3999 17.18 2040000 2.2671
2.3891 17.25 2048000 2.2700
2.3891 17.31 2056000 2.2589
2.397 17.38 2064000 2.2626
2.397 17.45 2072000 2.2607
2.3968 17.52 2080000 2.2663
2.3968 17.58 2088000 2.2637
2.3932 17.65 2096000 2.2623
2.3932 17.72 2104000 2.2673
2.3981 17.79 2112000 2.2547
2.3981 17.85 2120000 2.2598
2.3964 17.92 2128000 2.2690
2.3964 17.99 2136000 2.2619
2.3941 18.05 2144000 2.2558
2.3941 18.12 2152000 2.2659
2.3926 18.19 2160000 2.2552
2.3926 18.26 2168000 2.2671
2.399 18.32 2176000 2.2661
2.399 18.39 2184000 2.2591
2.3941 18.46 2192000 2.2568
2.3941 18.53 2200000 2.2588
2.3975 18.59 2208000 2.2631
2.3975 18.66 2216000 2.2655
2.3884 18.73 2224000 2.2628
2.3884 18.8 2232000 2.2656
2.399 18.86 2240000 2.2644
2.399 18.93 2248000 2.2608
2.4064 19.0 2256000 2.2561
2.4064 19.07 2264000 2.2680
2.3999 19.13 2272000 2.2703
2.3999 19.2 2280000 2.2624
2.398 19.27 2288000 2.2707
2.398 19.33 2296000 2.2646
2.4007 19.4 2304000 2.2659
2.4007 19.47 2312000 2.2710
2.3955 19.54 2320000 2.2720
2.3955 19.6 2328000 2.2569
2.3973 19.67 2336000 2.2641
2.3973 19.74 2344000 2.2633
2.4059 19.81 2352000 2.2622
2.4059 19.87 2360000 2.2539
2.3899 19.94 2368000 2.2665
2.3899 20.01 2376000 2.2629
2.4025 20.08 2384000 2.2551
2.4025 20.14 2392000 2.2546
2.3956 20.21 2400000 2.2620

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0