DouglasPontes
commited on
Model save
Browse files- README.md +303 -303
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -4,18 +4,18 @@ base_model: cardiffnlp/twitter-roberta-base-2019-90m
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
-
- name: 2020-Q4-50p-filtered
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
# 2020-Q4-50p-filtered
|
15 |
|
16 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 2.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -46,306 +46,306 @@ The following hyperparameters were used during training:
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:-----:|:-------:|:---------------:|
|
49 |
-
| No log | 0.03 | 8000 | 2.
|
50 |
-
|
|
51 |
-
|
|
52 |
-
| 2.
|
53 |
-
| 2.
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 2.
|
57 |
-
| 2.
|
58 |
-
| 2.
|
59 |
-
| 2.
|
60 |
-
| 2.
|
61 |
-
| 2.
|
62 |
-
| 2.
|
63 |
-
| 2.
|
64 |
-
| 2.
|
65 |
-
| 2.
|
66 |
-
| 2.
|
67 |
-
| 2.
|
68 |
-
| 2.
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 2.
|
76 |
-
| 2.
|
77 |
-
| 2.
|
78 |
-
| 2.
|
79 |
-
| 2.
|
80 |
-
| 2.
|
81 |
-
| 2.
|
82 |
-
| 2.
|
83 |
-
| 2.
|
84 |
-
| 2.
|
85 |
-
| 2.
|
86 |
-
| 2.
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 2.
|
92 |
-
| 2.
|
93 |
-
| 2.
|
94 |
-
| 2.
|
95 |
-
| 2.
|
96 |
-
| 2.
|
97 |
-
| 2.
|
98 |
-
| 2.
|
99 |
-
| 2.
|
100 |
-
| 2.
|
101 |
-
| 2.
|
102 |
-
| 2.
|
103 |
-
| 2.
|
104 |
-
| 2.
|
105 |
-
| 2.
|
106 |
-
| 2.
|
107 |
-
| 2.
|
108 |
-
| 2.
|
109 |
-
| 2.
|
110 |
-
| 2.
|
111 |
-
| 2.
|
112 |
-
| 2.
|
113 |
-
| 2.
|
114 |
-
| 2.
|
115 |
-
| 2.
|
116 |
-
| 2.
|
117 |
-
| 2.
|
118 |
-
| 2.
|
119 |
-
| 2.
|
120 |
-
| 2.
|
121 |
-
| 2.
|
122 |
-
| 2.
|
123 |
-
| 2.
|
124 |
-
| 2.
|
125 |
-
| 2.
|
126 |
-
| 2.
|
127 |
-
| 2.
|
128 |
-
| 2.
|
129 |
-
| 2.
|
130 |
-
| 2.
|
131 |
-
| 2.
|
132 |
-
| 2.
|
133 |
-
| 2.
|
134 |
-
| 2.
|
135 |
-
| 2.
|
136 |
-
| 2.
|
137 |
-
| 2.
|
138 |
-
| 2.
|
139 |
-
| 2.
|
140 |
-
| 2.
|
141 |
-
| 2.
|
142 |
-
| 2.
|
143 |
-
| 2.
|
144 |
-
| 2.
|
145 |
-
| 2.
|
146 |
-
| 2.
|
147 |
-
| 2.
|
148 |
-
| 2.
|
149 |
-
| 2.
|
150 |
-
| 2.
|
151 |
-
| 2.
|
152 |
-
| 2.
|
153 |
-
| 2.
|
154 |
-
| 2.
|
155 |
-
| 2.
|
156 |
-
| 2.
|
157 |
-
| 2.
|
158 |
-
| 2.
|
159 |
-
| 2.
|
160 |
-
| 2.
|
161 |
-
| 2.
|
162 |
-
| 2.
|
163 |
-
| 2.
|
164 |
-
| 2.
|
165 |
-
| 2.
|
166 |
-
| 2.
|
167 |
-
| 2.
|
168 |
-
| 2.
|
169 |
-
| 2.
|
170 |
-
| 2.
|
171 |
-
| 2.
|
172 |
-
| 2.
|
173 |
-
| 2.
|
174 |
-
| 2.
|
175 |
-
| 2.
|
176 |
-
| 2.
|
177 |
-
| 2.
|
178 |
-
| 2.
|
179 |
-
| 2.
|
180 |
-
| 2.
|
181 |
-
| 2.
|
182 |
-
| 2.
|
183 |
-
| 2.
|
184 |
-
| 2.
|
185 |
-
| 2.
|
186 |
-
| 2.
|
187 |
-
| 2.
|
188 |
-
| 2.
|
189 |
-
| 2.
|
190 |
-
| 2.
|
191 |
-
| 2.
|
192 |
-
| 2.
|
193 |
-
| 2.
|
194 |
-
| 2.
|
195 |
-
| 2.
|
196 |
-
| 2.
|
197 |
-
| 2.
|
198 |
-
| 2.
|
199 |
-
| 2.
|
200 |
-
| 2.
|
201 |
-
| 2.
|
202 |
-
| 2.
|
203 |
-
| 2.
|
204 |
-
| 2.
|
205 |
-
| 2.
|
206 |
-
| 2.
|
207 |
-
| 2.
|
208 |
-
| 2.
|
209 |
-
| 2.
|
210 |
-
| 2.
|
211 |
-
| 2.
|
212 |
-
| 2.
|
213 |
-
| 2.
|
214 |
-
| 2.
|
215 |
-
| 2.
|
216 |
-
| 2.
|
217 |
-
| 2.
|
218 |
-
| 2.
|
219 |
-
| 2.
|
220 |
-
| 2.
|
221 |
-
| 2.
|
222 |
-
| 2.
|
223 |
-
| 2.
|
224 |
-
| 2.
|
225 |
-
| 2.
|
226 |
-
| 2.
|
227 |
-
| 2.
|
228 |
-
| 2.
|
229 |
-
| 2.
|
230 |
-
| 2.
|
231 |
-
| 2.
|
232 |
-
| 2.
|
233 |
-
| 2.
|
234 |
-
| 2.
|
235 |
-
| 2.
|
236 |
-
| 2.
|
237 |
-
| 2.
|
238 |
-
| 2.
|
239 |
-
| 2.
|
240 |
-
| 2.
|
241 |
-
| 2.
|
242 |
-
| 2.
|
243 |
-
| 2.
|
244 |
-
| 2.
|
245 |
-
| 2.
|
246 |
-
| 2.
|
247 |
-
| 2.
|
248 |
-
| 2.
|
249 |
-
| 2.
|
250 |
-
| 2.
|
251 |
-
| 2.
|
252 |
-
| 2.
|
253 |
-
| 2.
|
254 |
-
| 2.
|
255 |
-
| 2.
|
256 |
-
| 2.
|
257 |
-
| 2.
|
258 |
-
| 2.
|
259 |
-
| 2.
|
260 |
-
| 2.
|
261 |
-
| 2.
|
262 |
-
| 2.
|
263 |
-
| 2.
|
264 |
-
| 2.
|
265 |
-
| 2.
|
266 |
-
| 2.
|
267 |
-
| 2.
|
268 |
-
| 2.
|
269 |
-
| 2.
|
270 |
-
| 2.
|
271 |
-
| 2.
|
272 |
-
| 2.
|
273 |
-
| 2.
|
274 |
-
| 2.
|
275 |
-
| 2.
|
276 |
-
| 2.
|
277 |
-
| 2.
|
278 |
-
| 2.
|
279 |
-
| 2.
|
280 |
-
| 2.
|
281 |
-
| 2.
|
282 |
-
| 2.
|
283 |
-
| 2.
|
284 |
-
| 2.
|
285 |
-
| 2.
|
286 |
-
| 2.
|
287 |
-
| 2.
|
288 |
-
| 2.
|
289 |
-
| 2.
|
290 |
-
| 2.
|
291 |
-
| 2.
|
292 |
-
| 2.
|
293 |
-
| 2.
|
294 |
-
| 2.
|
295 |
-
| 2.
|
296 |
-
| 2.
|
297 |
-
| 2.
|
298 |
-
| 2.
|
299 |
-
| 2.
|
300 |
-
| 2.
|
301 |
-
| 2.
|
302 |
-
| 2.
|
303 |
-
| 2.
|
304 |
-
| 2.
|
305 |
-
| 2.
|
306 |
-
| 2.
|
307 |
-
| 2.
|
308 |
-
| 2.
|
309 |
-
| 2.
|
310 |
-
| 2.
|
311 |
-
| 2.
|
312 |
-
| 2.
|
313 |
-
| 2.
|
314 |
-
| 2.
|
315 |
-
| 2.
|
316 |
-
| 2.
|
317 |
-
| 2.
|
318 |
-
| 2.
|
319 |
-
| 2.
|
320 |
-
| 2.
|
321 |
-
| 2.
|
322 |
-
| 2.
|
323 |
-
| 2.
|
324 |
-
| 2.
|
325 |
-
| 2.
|
326 |
-
| 2.
|
327 |
-
| 2.
|
328 |
-
| 2.
|
329 |
-
| 2.
|
330 |
-
| 2.
|
331 |
-
| 2.
|
332 |
-
| 2.
|
333 |
-
| 2.
|
334 |
-
| 2.
|
335 |
-
| 2.
|
336 |
-
| 2.
|
337 |
-
| 2.
|
338 |
-
| 2.
|
339 |
-
| 2.
|
340 |
-
| 2.
|
341 |
-
| 2.
|
342 |
-
| 2.
|
343 |
-
| 2.
|
344 |
-
| 2.
|
345 |
-
| 2.
|
346 |
-
| 2.
|
347 |
-
| 2.
|
348 |
-
| 2.
|
349 |
|
350 |
|
351 |
### Framework versions
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
+
- name: 2020-Q4-50p-filtered-random
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
+
# 2020-Q4-50p-filtered-random
|
15 |
|
16 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.2650
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:-----:|:-------:|:---------------:|
|
49 |
+
| No log | 0.03 | 8000 | 2.5888 |
|
50 |
+
| 2.8176 | 0.07 | 16000 | 2.4814 |
|
51 |
+
| 2.8176 | 0.1 | 24000 | 2.4264 |
|
52 |
+
| 2.5609 | 0.13 | 32000 | 2.3993 |
|
53 |
+
| 2.5609 | 0.17 | 40000 | 2.3761 |
|
54 |
+
| 2.4969 | 0.2 | 48000 | 2.3624 |
|
55 |
+
| 2.4969 | 0.24 | 56000 | 2.3481 |
|
56 |
+
| 2.48 | 0.27 | 64000 | 2.3399 |
|
57 |
+
| 2.48 | 0.3 | 72000 | 2.3289 |
|
58 |
+
| 2.451 | 0.34 | 80000 | 2.3221 |
|
59 |
+
| 2.451 | 0.37 | 88000 | 2.3183 |
|
60 |
+
| 2.4367 | 0.4 | 96000 | 2.3221 |
|
61 |
+
| 2.4367 | 0.44 | 104000 | 2.3142 |
|
62 |
+
| 2.4388 | 0.47 | 112000 | 2.3028 |
|
63 |
+
| 2.4388 | 0.51 | 120000 | 2.3066 |
|
64 |
+
| 2.4215 | 0.54 | 128000 | 2.3013 |
|
65 |
+
| 2.4215 | 0.57 | 136000 | 2.3039 |
|
66 |
+
| 2.4178 | 0.61 | 144000 | 2.2907 |
|
67 |
+
| 2.4178 | 0.64 | 152000 | 2.2996 |
|
68 |
+
| 2.4103 | 0.67 | 160000 | 2.2943 |
|
69 |
+
| 2.4103 | 0.71 | 168000 | 2.2900 |
|
70 |
+
| 2.4122 | 0.74 | 176000 | 2.2902 |
|
71 |
+
| 2.4122 | 0.77 | 184000 | 2.2961 |
|
72 |
+
| 2.4173 | 0.81 | 192000 | 2.2906 |
|
73 |
+
| 2.4173 | 0.84 | 200000 | 2.2925 |
|
74 |
+
| 2.4067 | 0.88 | 208000 | 2.2911 |
|
75 |
+
| 2.4067 | 0.91 | 216000 | 2.2844 |
|
76 |
+
| 2.4059 | 0.94 | 224000 | 2.2855 |
|
77 |
+
| 2.4059 | 0.98 | 232000 | 2.2811 |
|
78 |
+
| 2.4089 | 1.01 | 240000 | 2.2788 |
|
79 |
+
| 2.4089 | 1.04 | 248000 | 2.2796 |
|
80 |
+
| 2.4034 | 1.08 | 256000 | 2.2827 |
|
81 |
+
| 2.4034 | 1.11 | 264000 | 2.2803 |
|
82 |
+
| 2.408 | 1.15 | 272000 | 2.2746 |
|
83 |
+
| 2.408 | 1.18 | 280000 | 2.2851 |
|
84 |
+
| 2.3985 | 1.21 | 288000 | 2.2781 |
|
85 |
+
| 2.3985 | 1.25 | 296000 | 2.2795 |
|
86 |
+
| 2.4009 | 1.28 | 304000 | 2.2777 |
|
87 |
+
| 2.4009 | 1.31 | 312000 | 2.2770 |
|
88 |
+
| 2.4017 | 1.35 | 320000 | 2.2763 |
|
89 |
+
| 2.4017 | 1.38 | 328000 | 2.2734 |
|
90 |
+
| 2.4056 | 1.41 | 336000 | 2.2758 |
|
91 |
+
| 2.4056 | 1.45 | 344000 | 2.2763 |
|
92 |
+
| 2.4017 | 1.48 | 352000 | 2.2700 |
|
93 |
+
| 2.4017 | 1.52 | 360000 | 2.2736 |
|
94 |
+
| 2.3993 | 1.55 | 368000 | 2.2763 |
|
95 |
+
| 2.3993 | 1.58 | 376000 | 2.2792 |
|
96 |
+
| 2.3994 | 1.62 | 384000 | 2.2666 |
|
97 |
+
| 2.3994 | 1.65 | 392000 | 2.2699 |
|
98 |
+
| 2.3969 | 1.68 | 400000 | 2.2753 |
|
99 |
+
| 2.3969 | 1.72 | 408000 | 2.2707 |
|
100 |
+
| 2.4094 | 1.75 | 416000 | 2.2731 |
|
101 |
+
| 2.4094 | 1.79 | 424000 | 2.2709 |
|
102 |
+
| 2.4102 | 1.82 | 432000 | 2.2623 |
|
103 |
+
| 2.4102 | 1.85 | 440000 | 2.2751 |
|
104 |
+
| 2.4042 | 1.89 | 448000 | 2.2728 |
|
105 |
+
| 2.4042 | 1.92 | 456000 | 2.2714 |
|
106 |
+
| 2.3991 | 1.95 | 464000 | 2.2634 |
|
107 |
+
| 2.3991 | 1.99 | 472000 | 2.2695 |
|
108 |
+
| 2.3976 | 2.02 | 480000 | 2.2731 |
|
109 |
+
| 2.3976 | 2.05 | 488000 | 2.2736 |
|
110 |
+
| 2.4019 | 2.09 | 496000 | 2.2803 |
|
111 |
+
| 2.4019 | 2.12 | 504000 | 2.2699 |
|
112 |
+
| 2.4044 | 2.16 | 512000 | 2.2731 |
|
113 |
+
| 2.4044 | 2.19 | 520000 | 2.2709 |
|
114 |
+
| 2.3989 | 2.22 | 528000 | 2.2716 |
|
115 |
+
| 2.3989 | 2.26 | 536000 | 2.2668 |
|
116 |
+
| 2.4068 | 2.29 | 544000 | 2.2728 |
|
117 |
+
| 2.4068 | 2.32 | 552000 | 2.2709 |
|
118 |
+
| 2.4047 | 2.36 | 560000 | 2.2683 |
|
119 |
+
| 2.4047 | 2.39 | 568000 | 2.2731 |
|
120 |
+
| 2.3976 | 2.43 | 576000 | 2.2676 |
|
121 |
+
| 2.3976 | 2.46 | 584000 | 2.2736 |
|
122 |
+
| 2.3994 | 2.49 | 592000 | 2.2624 |
|
123 |
+
| 2.3994 | 2.53 | 600000 | 2.2773 |
|
124 |
+
| 2.3997 | 2.56 | 608000 | 2.2719 |
|
125 |
+
| 2.3997 | 2.59 | 616000 | 2.2701 |
|
126 |
+
| 2.4042 | 2.63 | 624000 | 2.2695 |
|
127 |
+
| 2.4042 | 2.66 | 632000 | 2.2666 |
|
128 |
+
| 2.3994 | 2.69 | 640000 | 2.2719 |
|
129 |
+
| 2.3994 | 2.73 | 648000 | 2.2686 |
|
130 |
+
| 2.3953 | 2.76 | 656000 | 2.2623 |
|
131 |
+
| 2.3953 | 2.8 | 664000 | 2.2662 |
|
132 |
+
| 2.402 | 2.83 | 672000 | 2.2707 |
|
133 |
+
| 2.402 | 2.86 | 680000 | 2.2662 |
|
134 |
+
| 2.3929 | 2.9 | 688000 | 2.2726 |
|
135 |
+
| 2.3929 | 2.93 | 696000 | 2.2682 |
|
136 |
+
| 2.3977 | 2.96 | 704000 | 2.2634 |
|
137 |
+
| 2.3977 | 3.0 | 712000 | 2.2685 |
|
138 |
+
| 2.4022 | 3.03 | 720000 | 2.2693 |
|
139 |
+
| 2.4022 | 3.07 | 728000 | 2.2666 |
|
140 |
+
| 2.4046 | 3.1 | 736000 | 2.2690 |
|
141 |
+
| 2.4046 | 3.13 | 744000 | 2.2641 |
|
142 |
+
| 2.3977 | 3.17 | 752000 | 2.2658 |
|
143 |
+
| 2.3977 | 3.2 | 760000 | 2.2645 |
|
144 |
+
| 2.4015 | 3.23 | 768000 | 2.2619 |
|
145 |
+
| 2.4015 | 3.27 | 776000 | 2.2671 |
|
146 |
+
| 2.393 | 3.3 | 784000 | 2.2694 |
|
147 |
+
| 2.393 | 3.33 | 792000 | 2.2662 |
|
148 |
+
| 2.3907 | 3.37 | 800000 | 2.2691 |
|
149 |
+
| 2.3907 | 3.4 | 808000 | 2.2679 |
|
150 |
+
| 2.3987 | 3.44 | 816000 | 2.2688 |
|
151 |
+
| 2.3987 | 3.47 | 824000 | 2.2655 |
|
152 |
+
| 2.4116 | 3.5 | 832000 | 2.2668 |
|
153 |
+
| 2.4116 | 3.54 | 840000 | 2.2675 |
|
154 |
+
| 2.3913 | 3.57 | 848000 | 2.2689 |
|
155 |
+
| 2.3913 | 3.6 | 856000 | 2.2642 |
|
156 |
+
| 2.3974 | 3.64 | 864000 | 2.2667 |
|
157 |
+
| 2.3974 | 3.67 | 872000 | 2.2717 |
|
158 |
+
| 2.4046 | 3.71 | 880000 | 2.2661 |
|
159 |
+
| 2.4046 | 3.74 | 888000 | 2.2705 |
|
160 |
+
| 2.4006 | 3.77 | 896000 | 2.2637 |
|
161 |
+
| 2.4006 | 3.81 | 904000 | 2.2635 |
|
162 |
+
| 2.3987 | 3.84 | 912000 | 2.2642 |
|
163 |
+
| 2.3987 | 3.87 | 920000 | 2.2691 |
|
164 |
+
| 2.4068 | 3.91 | 928000 | 2.2689 |
|
165 |
+
| 2.4068 | 3.94 | 936000 | 2.2730 |
|
166 |
+
| 2.4092 | 3.97 | 944000 | 2.2644 |
|
167 |
+
| 2.4092 | 4.01 | 952000 | 2.2706 |
|
168 |
+
| 2.4035 | 4.04 | 960000 | 2.2671 |
|
169 |
+
| 2.4035 | 4.08 | 968000 | 2.2562 |
|
170 |
+
| 2.4005 | 4.11 | 976000 | 2.2622 |
|
171 |
+
| 2.4005 | 4.14 | 984000 | 2.2642 |
|
172 |
+
| 2.406 | 4.18 | 992000 | 2.2625 |
|
173 |
+
| 2.406 | 4.21 | 1000000 | 2.2662 |
|
174 |
+
| 2.3972 | 4.24 | 1008000 | 2.2658 |
|
175 |
+
| 2.3972 | 4.28 | 1016000 | 2.2668 |
|
176 |
+
| 2.3937 | 4.31 | 1024000 | 2.2593 |
|
177 |
+
| 2.3937 | 4.35 | 1032000 | 2.2712 |
|
178 |
+
| 2.3982 | 4.38 | 1040000 | 2.2695 |
|
179 |
+
| 2.3982 | 4.41 | 1048000 | 2.2684 |
|
180 |
+
| 2.4034 | 4.45 | 1056000 | 2.2643 |
|
181 |
+
| 2.4034 | 4.48 | 1064000 | 2.2665 |
|
182 |
+
| 2.3996 | 4.51 | 1072000 | 2.2692 |
|
183 |
+
| 2.3996 | 4.55 | 1080000 | 2.2628 |
|
184 |
+
| 2.4054 | 4.58 | 1088000 | 2.2673 |
|
185 |
+
| 2.4054 | 4.61 | 1096000 | 2.2577 |
|
186 |
+
| 2.4039 | 4.65 | 1104000 | 2.2671 |
|
187 |
+
| 2.4039 | 4.68 | 1112000 | 2.2586 |
|
188 |
+
| 2.4033 | 4.72 | 1120000 | 2.2730 |
|
189 |
+
| 2.4033 | 4.75 | 1128000 | 2.2655 |
|
190 |
+
| 2.4036 | 4.78 | 1136000 | 2.2694 |
|
191 |
+
| 2.4036 | 4.82 | 1144000 | 2.2630 |
|
192 |
+
| 2.4036 | 4.85 | 1152000 | 2.2618 |
|
193 |
+
| 2.4036 | 4.88 | 1160000 | 2.2665 |
|
194 |
+
| 2.4005 | 4.92 | 1168000 | 2.2609 |
|
195 |
+
| 2.4005 | 4.95 | 1176000 | 2.2617 |
|
196 |
+
| 2.4065 | 4.99 | 1184000 | 2.2646 |
|
197 |
+
| 2.4065 | 5.02 | 1192000 | 2.2606 |
|
198 |
+
| 2.4044 | 5.05 | 1200000 | 2.2656 |
|
199 |
+
| 2.4044 | 5.09 | 1208000 | 2.2630 |
|
200 |
+
| 2.3997 | 5.12 | 1216000 | 2.2737 |
|
201 |
+
| 2.3997 | 5.15 | 1224000 | 2.2762 |
|
202 |
+
| 2.407 | 5.19 | 1232000 | 2.2669 |
|
203 |
+
| 2.407 | 5.22 | 1240000 | 2.2695 |
|
204 |
+
| 2.4013 | 5.25 | 1248000 | 2.2704 |
|
205 |
+
| 2.4013 | 5.29 | 1256000 | 2.2612 |
|
206 |
+
| 2.4118 | 5.32 | 1264000 | 2.2654 |
|
207 |
+
| 2.4118 | 5.36 | 1272000 | 2.2683 |
|
208 |
+
| 2.3953 | 5.39 | 1280000 | 2.2628 |
|
209 |
+
| 2.3953 | 5.42 | 1288000 | 2.2605 |
|
210 |
+
| 2.3973 | 5.46 | 1296000 | 2.2667 |
|
211 |
+
| 2.3973 | 5.49 | 1304000 | 2.2640 |
|
212 |
+
| 2.4027 | 5.52 | 1312000 | 2.2619 |
|
213 |
+
| 2.4027 | 5.56 | 1320000 | 2.2687 |
|
214 |
+
| 2.3967 | 5.59 | 1328000 | 2.2598 |
|
215 |
+
| 2.3967 | 5.63 | 1336000 | 2.2621 |
|
216 |
+
| 2.4028 | 5.66 | 1344000 | 2.2602 |
|
217 |
+
| 2.4028 | 5.69 | 1352000 | 2.2713 |
|
218 |
+
| 2.4053 | 5.73 | 1360000 | 2.2623 |
|
219 |
+
| 2.4053 | 5.76 | 1368000 | 2.2697 |
|
220 |
+
| 2.3987 | 5.79 | 1376000 | 2.2638 |
|
221 |
+
| 2.3987 | 5.83 | 1384000 | 2.2601 |
|
222 |
+
| 2.3987 | 5.86 | 1392000 | 2.2642 |
|
223 |
+
| 2.3987 | 5.89 | 1400000 | 2.2656 |
|
224 |
+
| 2.401 | 5.93 | 1408000 | 2.2712 |
|
225 |
+
| 2.401 | 5.96 | 1416000 | 2.2639 |
|
226 |
+
| 2.4011 | 6.0 | 1424000 | 2.2646 |
|
227 |
+
| 2.4011 | 6.03 | 1432000 | 2.2669 |
|
228 |
+
| 2.4022 | 6.06 | 1440000 | 2.2619 |
|
229 |
+
| 2.4022 | 6.1 | 1448000 | 2.2580 |
|
230 |
+
| 2.3998 | 6.13 | 1456000 | 2.2612 |
|
231 |
+
| 2.3998 | 6.16 | 1464000 | 2.2652 |
|
232 |
+
| 2.3999 | 6.2 | 1472000 | 2.2610 |
|
233 |
+
| 2.3999 | 6.23 | 1480000 | 2.2567 |
|
234 |
+
| 2.3984 | 6.27 | 1488000 | 2.2590 |
|
235 |
+
| 2.3984 | 6.3 | 1496000 | 2.2565 |
|
236 |
+
| 2.4017 | 6.33 | 1504000 | 2.2658 |
|
237 |
+
| 2.4017 | 6.37 | 1512000 | 2.2626 |
|
238 |
+
| 2.4055 | 6.4 | 1520000 | 2.2656 |
|
239 |
+
| 2.4055 | 6.43 | 1528000 | 2.2622 |
|
240 |
+
| 2.3959 | 6.47 | 1536000 | 2.2691 |
|
241 |
+
| 2.3959 | 6.5 | 1544000 | 2.2604 |
|
242 |
+
| 2.4016 | 6.53 | 1552000 | 2.2599 |
|
243 |
+
| 2.4016 | 6.57 | 1560000 | 2.2655 |
|
244 |
+
| 2.3986 | 6.6 | 1568000 | 2.2684 |
|
245 |
+
| 2.3986 | 6.64 | 1576000 | 2.2716 |
|
246 |
+
| 2.4051 | 6.67 | 1584000 | 2.2605 |
|
247 |
+
| 2.4051 | 6.7 | 1592000 | 2.2569 |
|
248 |
+
| 2.4057 | 6.74 | 1600000 | 2.2687 |
|
249 |
+
| 2.4057 | 6.77 | 1608000 | 2.2571 |
|
250 |
+
| 2.3956 | 6.8 | 1616000 | 2.2664 |
|
251 |
+
| 2.3956 | 6.84 | 1624000 | 2.2612 |
|
252 |
+
| 2.4048 | 6.87 | 1632000 | 2.2643 |
|
253 |
+
| 2.4048 | 6.91 | 1640000 | 2.2633 |
|
254 |
+
| 2.4042 | 6.94 | 1648000 | 2.2634 |
|
255 |
+
| 2.4042 | 6.97 | 1656000 | 2.2637 |
|
256 |
+
| 2.4008 | 7.01 | 1664000 | 2.2619 |
|
257 |
+
| 2.4008 | 7.04 | 1672000 | 2.2579 |
|
258 |
+
| 2.397 | 7.07 | 1680000 | 2.2628 |
|
259 |
+
| 2.397 | 7.11 | 1688000 | 2.2593 |
|
260 |
+
| 2.4044 | 7.14 | 1696000 | 2.2593 |
|
261 |
+
| 2.4044 | 7.17 | 1704000 | 2.2613 |
|
262 |
+
| 2.3979 | 7.21 | 1712000 | 2.2685 |
|
263 |
+
| 2.3979 | 7.24 | 1720000 | 2.2683 |
|
264 |
+
| 2.4017 | 7.28 | 1728000 | 2.2611 |
|
265 |
+
| 2.4017 | 7.31 | 1736000 | 2.2672 |
|
266 |
+
| 2.4017 | 7.34 | 1744000 | 2.2577 |
|
267 |
+
| 2.4017 | 7.38 | 1752000 | 2.2609 |
|
268 |
+
| 2.4018 | 7.41 | 1760000 | 2.2567 |
|
269 |
+
| 2.4018 | 7.44 | 1768000 | 2.2661 |
|
270 |
+
| 2.3905 | 7.48 | 1776000 | 2.2671 |
|
271 |
+
| 2.3905 | 7.51 | 1784000 | 2.2663 |
|
272 |
+
| 2.4063 | 7.55 | 1792000 | 2.2619 |
|
273 |
+
| 2.4063 | 7.58 | 1800000 | 2.2587 |
|
274 |
+
| 2.4015 | 7.61 | 1808000 | 2.2584 |
|
275 |
+
| 2.4015 | 7.65 | 1816000 | 2.2580 |
|
276 |
+
| 2.3984 | 7.68 | 1824000 | 2.2586 |
|
277 |
+
| 2.3984 | 7.71 | 1832000 | 2.2620 |
|
278 |
+
| 2.3962 | 7.75 | 1840000 | 2.2584 |
|
279 |
+
| 2.3962 | 7.78 | 1848000 | 2.2607 |
|
280 |
+
| 2.3998 | 7.81 | 1856000 | 2.2638 |
|
281 |
+
| 2.3998 | 7.85 | 1864000 | 2.2629 |
|
282 |
+
| 2.4005 | 7.88 | 1872000 | 2.2716 |
|
283 |
+
| 2.4005 | 7.92 | 1880000 | 2.2623 |
|
284 |
+
| 2.4006 | 7.95 | 1888000 | 2.2555 |
|
285 |
+
| 2.4006 | 7.98 | 1896000 | 2.2653 |
|
286 |
+
| 2.3946 | 8.02 | 1904000 | 2.2629 |
|
287 |
+
| 2.3946 | 8.05 | 1912000 | 2.2654 |
|
288 |
+
| 2.3983 | 8.08 | 1920000 | 2.2623 |
|
289 |
+
| 2.3983 | 8.12 | 1928000 | 2.2544 |
|
290 |
+
| 2.4038 | 8.15 | 1936000 | 2.2605 |
|
291 |
+
| 2.4038 | 8.19 | 1944000 | 2.2622 |
|
292 |
+
| 2.399 | 8.22 | 1952000 | 2.2600 |
|
293 |
+
| 2.399 | 8.25 | 1960000 | 2.2629 |
|
294 |
+
| 2.3983 | 8.29 | 1968000 | 2.2621 |
|
295 |
+
| 2.3983 | 8.32 | 1976000 | 2.2609 |
|
296 |
+
| 2.4059 | 8.35 | 1984000 | 2.2705 |
|
297 |
+
| 2.4059 | 8.39 | 1992000 | 2.2572 |
|
298 |
+
| 2.4058 | 8.42 | 2000000 | 2.2602 |
|
299 |
+
| 2.4058 | 8.45 | 2008000 | 2.2626 |
|
300 |
+
| 2.3954 | 8.49 | 2016000 | 2.2668 |
|
301 |
+
| 2.3954 | 8.52 | 2024000 | 2.2599 |
|
302 |
+
| 2.3932 | 8.56 | 2032000 | 2.2643 |
|
303 |
+
| 2.3932 | 8.59 | 2040000 | 2.2559 |
|
304 |
+
| 2.4001 | 8.62 | 2048000 | 2.2614 |
|
305 |
+
| 2.4001 | 8.66 | 2056000 | 2.2577 |
|
306 |
+
| 2.3912 | 8.69 | 2064000 | 2.2665 |
|
307 |
+
| 2.3912 | 8.72 | 2072000 | 2.2576 |
|
308 |
+
| 2.4015 | 8.76 | 2080000 | 2.2672 |
|
309 |
+
| 2.4015 | 8.79 | 2088000 | 2.2598 |
|
310 |
+
| 2.4015 | 8.83 | 2096000 | 2.2599 |
|
311 |
+
| 2.4015 | 8.86 | 2104000 | 2.2641 |
|
312 |
+
| 2.399 | 8.89 | 2112000 | 2.2612 |
|
313 |
+
| 2.399 | 8.93 | 2120000 | 2.2607 |
|
314 |
+
| 2.3963 | 8.96 | 2128000 | 2.2633 |
|
315 |
+
| 2.3963 | 8.99 | 2136000 | 2.2567 |
|
316 |
+
| 2.3957 | 9.03 | 2144000 | 2.2630 |
|
317 |
+
| 2.3957 | 9.06 | 2152000 | 2.2597 |
|
318 |
+
| 2.3943 | 9.09 | 2160000 | 2.2624 |
|
319 |
+
| 2.3943 | 9.13 | 2168000 | 2.2599 |
|
320 |
+
| 2.4025 | 9.16 | 2176000 | 2.2578 |
|
321 |
+
| 2.4025 | 9.2 | 2184000 | 2.2640 |
|
322 |
+
| 2.3944 | 9.23 | 2192000 | 2.2562 |
|
323 |
+
| 2.3944 | 9.26 | 2200000 | 2.2660 |
|
324 |
+
| 2.3964 | 9.3 | 2208000 | 2.2556 |
|
325 |
+
| 2.3964 | 9.33 | 2216000 | 2.2697 |
|
326 |
+
| 2.4026 | 9.36 | 2224000 | 2.2652 |
|
327 |
+
| 2.4026 | 9.4 | 2232000 | 2.2571 |
|
328 |
+
| 2.398 | 9.43 | 2240000 | 2.2555 |
|
329 |
+
| 2.398 | 9.47 | 2248000 | 2.2607 |
|
330 |
+
| 2.4038 | 9.5 | 2256000 | 2.2558 |
|
331 |
+
| 2.4038 | 9.53 | 2264000 | 2.2660 |
|
332 |
+
| 2.4027 | 9.57 | 2272000 | 2.2587 |
|
333 |
+
| 2.4027 | 9.6 | 2280000 | 2.2605 |
|
334 |
+
| 2.4025 | 9.63 | 2288000 | 2.2578 |
|
335 |
+
| 2.4025 | 9.67 | 2296000 | 2.2609 |
|
336 |
+
| 2.3969 | 9.7 | 2304000 | 2.2597 |
|
337 |
+
| 2.3969 | 9.73 | 2312000 | 2.2619 |
|
338 |
+
| 2.3886 | 9.77 | 2320000 | 2.2645 |
|
339 |
+
| 2.3886 | 9.8 | 2328000 | 2.2717 |
|
340 |
+
| 2.3942 | 9.84 | 2336000 | 2.2627 |
|
341 |
+
| 2.3942 | 9.87 | 2344000 | 2.2582 |
|
342 |
+
| 2.396 | 9.9 | 2352000 | 2.2634 |
|
343 |
+
| 2.396 | 9.94 | 2360000 | 2.2582 |
|
344 |
+
| 2.3998 | 9.97 | 2368000 | 2.2643 |
|
345 |
+
| 2.3998 | 10.0 | 2376000 | 2.2690 |
|
346 |
+
| 2.4014 | 10.04 | 2384000 | 2.2655 |
|
347 |
+
| 2.4014 | 10.07 | 2392000 | 2.2660 |
|
348 |
+
| 2.4004 | 10.11 | 2400000 | 2.2650 |
|
349 |
|
350 |
|
351 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498859189
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d8178411214699ea44f8401b811da697c0953dbf4581d8f1bf4ad5042b0a1a1
|
3 |
size 498859189
|