2020-Q4-50p-filtered-random
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2570
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2400000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.03 | 8000 | 2.5888 |
2.8176 | 0.07 | 16000 | 2.4814 |
2.8176 | 0.1 | 24000 | 2.4264 |
2.5609 | 0.13 | 32000 | 2.3993 |
2.5609 | 0.17 | 40000 | 2.3761 |
2.4969 | 0.2 | 48000 | 2.3624 |
2.4969 | 0.24 | 56000 | 2.3481 |
2.48 | 0.27 | 64000 | 2.3399 |
2.48 | 0.3 | 72000 | 2.3289 |
2.451 | 0.34 | 80000 | 2.3221 |
2.451 | 0.37 | 88000 | 2.3183 |
2.4367 | 0.4 | 96000 | 2.3221 |
2.4367 | 0.44 | 104000 | 2.3142 |
2.4388 | 0.47 | 112000 | 2.3028 |
2.4388 | 0.51 | 120000 | 2.3066 |
2.4215 | 0.54 | 128000 | 2.3013 |
2.4215 | 0.57 | 136000 | 2.3039 |
2.4178 | 0.61 | 144000 | 2.2907 |
2.4178 | 0.64 | 152000 | 2.2996 |
2.4103 | 0.67 | 160000 | 2.2943 |
2.4103 | 0.71 | 168000 | 2.2900 |
2.4122 | 0.74 | 176000 | 2.2902 |
2.4122 | 0.77 | 184000 | 2.2961 |
2.4173 | 0.81 | 192000 | 2.2906 |
2.4173 | 0.84 | 200000 | 2.2925 |
2.4067 | 0.88 | 208000 | 2.2911 |
2.4067 | 0.91 | 216000 | 2.2844 |
2.4059 | 0.94 | 224000 | 2.2855 |
2.4059 | 0.98 | 232000 | 2.2811 |
2.4089 | 1.01 | 240000 | 2.2788 |
2.4089 | 1.04 | 248000 | 2.2796 |
2.4034 | 1.08 | 256000 | 2.2827 |
2.4034 | 1.11 | 264000 | 2.2803 |
2.408 | 1.15 | 272000 | 2.2746 |
2.408 | 1.18 | 280000 | 2.2851 |
2.3985 | 1.21 | 288000 | 2.2781 |
2.3985 | 1.25 | 296000 | 2.2795 |
2.4009 | 1.28 | 304000 | 2.2777 |
2.4009 | 1.31 | 312000 | 2.2770 |
2.4017 | 1.35 | 320000 | 2.2763 |
2.4017 | 1.38 | 328000 | 2.2734 |
2.4056 | 1.41 | 336000 | 2.2758 |
2.4056 | 1.45 | 344000 | 2.2763 |
2.4017 | 1.48 | 352000 | 2.2700 |
2.4017 | 1.52 | 360000 | 2.2736 |
2.3993 | 1.55 | 368000 | 2.2763 |
2.3993 | 1.58 | 376000 | 2.2792 |
2.3994 | 1.62 | 384000 | 2.2666 |
2.3994 | 1.65 | 392000 | 2.2699 |
2.3969 | 1.68 | 400000 | 2.2753 |
2.3969 | 1.72 | 408000 | 2.2707 |
2.4094 | 1.75 | 416000 | 2.2731 |
2.4094 | 1.79 | 424000 | 2.2709 |
2.4102 | 1.82 | 432000 | 2.2623 |
2.4102 | 1.85 | 440000 | 2.2751 |
2.4042 | 1.89 | 448000 | 2.2728 |
2.4042 | 1.92 | 456000 | 2.2714 |
2.3991 | 1.95 | 464000 | 2.2634 |
2.3991 | 1.99 | 472000 | 2.2695 |
2.3976 | 2.02 | 480000 | 2.2731 |
2.3976 | 2.05 | 488000 | 2.2736 |
2.4019 | 2.09 | 496000 | 2.2803 |
2.4019 | 2.12 | 504000 | 2.2699 |
2.4044 | 2.16 | 512000 | 2.2731 |
2.4044 | 2.19 | 520000 | 2.2709 |
2.3989 | 2.22 | 528000 | 2.2716 |
2.3989 | 2.26 | 536000 | 2.2668 |
2.4068 | 2.29 | 544000 | 2.2728 |
2.4068 | 2.32 | 552000 | 2.2709 |
2.4047 | 2.36 | 560000 | 2.2683 |
2.4047 | 2.39 | 568000 | 2.2731 |
2.3976 | 2.43 | 576000 | 2.2676 |
2.3976 | 2.46 | 584000 | 2.2736 |
2.3994 | 2.49 | 592000 | 2.2624 |
2.3994 | 2.53 | 600000 | 2.2773 |
2.3997 | 2.56 | 608000 | 2.2719 |
2.3997 | 2.59 | 616000 | 2.2701 |
2.4042 | 2.63 | 624000 | 2.2695 |
2.4042 | 2.66 | 632000 | 2.2666 |
2.3994 | 2.69 | 640000 | 2.2719 |
2.3994 | 2.73 | 648000 | 2.2686 |
2.3953 | 2.76 | 656000 | 2.2623 |
2.3953 | 2.8 | 664000 | 2.2662 |
2.402 | 2.83 | 672000 | 2.2707 |
2.402 | 2.86 | 680000 | 2.2662 |
2.3929 | 2.9 | 688000 | 2.2726 |
2.3929 | 2.93 | 696000 | 2.2682 |
2.3977 | 2.96 | 704000 | 2.2634 |
2.3977 | 3.0 | 712000 | 2.2685 |
2.4022 | 3.03 | 720000 | 2.2693 |
2.4022 | 3.07 | 728000 | 2.2666 |
2.4046 | 3.1 | 736000 | 2.2690 |
2.4046 | 3.13 | 744000 | 2.2641 |
2.3977 | 3.17 | 752000 | 2.2658 |
2.3977 | 3.2 | 760000 | 2.2645 |
2.4015 | 3.23 | 768000 | 2.2619 |
2.4015 | 3.27 | 776000 | 2.2671 |
2.393 | 3.3 | 784000 | 2.2694 |
2.393 | 3.33 | 792000 | 2.2662 |
2.3907 | 3.37 | 800000 | 2.2691 |
2.3907 | 3.4 | 808000 | 2.2679 |
2.3987 | 3.44 | 816000 | 2.2688 |
2.3987 | 3.47 | 824000 | 2.2655 |
2.4116 | 3.5 | 832000 | 2.2668 |
2.4116 | 3.54 | 840000 | 2.2675 |
2.3913 | 3.57 | 848000 | 2.2689 |
2.3913 | 3.6 | 856000 | 2.2642 |
2.3974 | 3.64 | 864000 | 2.2667 |
2.3974 | 3.67 | 872000 | 2.2717 |
2.4046 | 3.71 | 880000 | 2.2661 |
2.4046 | 3.74 | 888000 | 2.2705 |
2.4006 | 3.77 | 896000 | 2.2637 |
2.4006 | 3.81 | 904000 | 2.2635 |
2.3987 | 3.84 | 912000 | 2.2642 |
2.3987 | 3.87 | 920000 | 2.2691 |
2.4068 | 3.91 | 928000 | 2.2689 |
2.4068 | 3.94 | 936000 | 2.2730 |
2.4092 | 3.97 | 944000 | 2.2644 |
2.4092 | 4.01 | 952000 | 2.2706 |
2.4035 | 4.04 | 960000 | 2.2671 |
2.4035 | 4.08 | 968000 | 2.2562 |
2.4005 | 4.11 | 976000 | 2.2622 |
2.4005 | 4.14 | 984000 | 2.2642 |
2.406 | 4.18 | 992000 | 2.2625 |
2.406 | 4.21 | 1000000 | 2.2662 |
2.3972 | 4.24 | 1008000 | 2.2658 |
2.3972 | 4.28 | 1016000 | 2.2668 |
2.3937 | 4.31 | 1024000 | 2.2593 |
2.3937 | 4.35 | 1032000 | 2.2712 |
2.3982 | 4.38 | 1040000 | 2.2695 |
2.3982 | 4.41 | 1048000 | 2.2684 |
2.4034 | 4.45 | 1056000 | 2.2643 |
2.4034 | 4.48 | 1064000 | 2.2665 |
2.3996 | 4.51 | 1072000 | 2.2692 |
2.3996 | 4.55 | 1080000 | 2.2628 |
2.4054 | 4.58 | 1088000 | 2.2673 |
2.4054 | 4.61 | 1096000 | 2.2577 |
2.4039 | 4.65 | 1104000 | 2.2671 |
2.4039 | 4.68 | 1112000 | 2.2586 |
2.4033 | 4.72 | 1120000 | 2.2730 |
2.4033 | 4.75 | 1128000 | 2.2655 |
2.4036 | 4.78 | 1136000 | 2.2694 |
2.4036 | 4.82 | 1144000 | 2.2630 |
2.4036 | 4.85 | 1152000 | 2.2618 |
2.4036 | 4.88 | 1160000 | 2.2665 |
2.4005 | 4.92 | 1168000 | 2.2609 |
2.4005 | 4.95 | 1176000 | 2.2617 |
2.4065 | 4.99 | 1184000 | 2.2646 |
2.4065 | 5.02 | 1192000 | 2.2606 |
2.4044 | 5.05 | 1200000 | 2.2656 |
2.4044 | 5.09 | 1208000 | 2.2630 |
2.3997 | 5.12 | 1216000 | 2.2737 |
2.3997 | 5.15 | 1224000 | 2.2762 |
2.407 | 5.19 | 1232000 | 2.2669 |
2.407 | 5.22 | 1240000 | 2.2695 |
2.4013 | 5.25 | 1248000 | 2.2704 |
2.4013 | 5.29 | 1256000 | 2.2612 |
2.4118 | 5.32 | 1264000 | 2.2654 |
2.4118 | 5.36 | 1272000 | 2.2683 |
2.3953 | 5.39 | 1280000 | 2.2628 |
2.3953 | 5.42 | 1288000 | 2.2605 |
2.3973 | 5.46 | 1296000 | 2.2667 |
2.3973 | 5.49 | 1304000 | 2.2640 |
2.4027 | 5.52 | 1312000 | 2.2619 |
2.4027 | 5.56 | 1320000 | 2.2687 |
2.3967 | 5.59 | 1328000 | 2.2598 |
2.3967 | 5.63 | 1336000 | 2.2621 |
2.4028 | 5.66 | 1344000 | 2.2602 |
2.4028 | 5.69 | 1352000 | 2.2713 |
2.4053 | 5.73 | 1360000 | 2.2623 |
2.4053 | 5.76 | 1368000 | 2.2697 |
2.3987 | 5.79 | 1376000 | 2.2638 |
2.3987 | 5.83 | 1384000 | 2.2601 |
2.3987 | 5.86 | 1392000 | 2.2642 |
2.3987 | 5.89 | 1400000 | 2.2656 |
2.401 | 5.93 | 1408000 | 2.2712 |
2.401 | 5.96 | 1416000 | 2.2639 |
2.4011 | 6.0 | 1424000 | 2.2646 |
2.4011 | 6.03 | 1432000 | 2.2669 |
2.4022 | 6.06 | 1440000 | 2.2619 |
2.4022 | 6.1 | 1448000 | 2.2580 |
2.3998 | 6.13 | 1456000 | 2.2612 |
2.3998 | 6.16 | 1464000 | 2.2652 |
2.3999 | 6.2 | 1472000 | 2.2610 |
2.3999 | 6.23 | 1480000 | 2.2567 |
2.3984 | 6.27 | 1488000 | 2.2590 |
2.3984 | 6.3 | 1496000 | 2.2565 |
2.4017 | 6.33 | 1504000 | 2.2658 |
2.4017 | 6.37 | 1512000 | 2.2626 |
2.4055 | 6.4 | 1520000 | 2.2656 |
2.4055 | 6.43 | 1528000 | 2.2622 |
2.3959 | 6.47 | 1536000 | 2.2691 |
2.3959 | 6.5 | 1544000 | 2.2604 |
2.4016 | 6.53 | 1552000 | 2.2599 |
2.4016 | 6.57 | 1560000 | 2.2655 |
2.3986 | 6.6 | 1568000 | 2.2684 |
2.3986 | 6.64 | 1576000 | 2.2716 |
2.4051 | 6.67 | 1584000 | 2.2605 |
2.4051 | 6.7 | 1592000 | 2.2569 |
2.4057 | 6.74 | 1600000 | 2.2687 |
2.4057 | 6.77 | 1608000 | 2.2571 |
2.3956 | 6.8 | 1616000 | 2.2664 |
2.3956 | 6.84 | 1624000 | 2.2612 |
2.4048 | 6.87 | 1632000 | 2.2643 |
2.4048 | 6.91 | 1640000 | 2.2633 |
2.4042 | 6.94 | 1648000 | 2.2634 |
2.4042 | 6.97 | 1656000 | 2.2637 |
2.4008 | 7.01 | 1664000 | 2.2619 |
2.4008 | 7.04 | 1672000 | 2.2579 |
2.397 | 7.07 | 1680000 | 2.2628 |
2.397 | 7.11 | 1688000 | 2.2593 |
2.4044 | 7.14 | 1696000 | 2.2593 |
2.4044 | 7.17 | 1704000 | 2.2613 |
2.3979 | 7.21 | 1712000 | 2.2685 |
2.3979 | 7.24 | 1720000 | 2.2683 |
2.4017 | 7.28 | 1728000 | 2.2611 |
2.4017 | 7.31 | 1736000 | 2.2672 |
2.4017 | 7.34 | 1744000 | 2.2577 |
2.4017 | 7.38 | 1752000 | 2.2609 |
2.4018 | 7.41 | 1760000 | 2.2567 |
2.4018 | 7.44 | 1768000 | 2.2661 |
2.3905 | 7.48 | 1776000 | 2.2671 |
2.3905 | 7.51 | 1784000 | 2.2663 |
2.4063 | 7.55 | 1792000 | 2.2619 |
2.4063 | 7.58 | 1800000 | 2.2587 |
2.4015 | 7.61 | 1808000 | 2.2584 |
2.4015 | 7.65 | 1816000 | 2.2580 |
2.3984 | 7.68 | 1824000 | 2.2586 |
2.3984 | 7.71 | 1832000 | 2.2620 |
2.3962 | 7.75 | 1840000 | 2.2584 |
2.3962 | 7.78 | 1848000 | 2.2607 |
2.3998 | 7.81 | 1856000 | 2.2638 |
2.3998 | 7.85 | 1864000 | 2.2629 |
2.4005 | 7.88 | 1872000 | 2.2716 |
2.4005 | 7.92 | 1880000 | 2.2623 |
2.4006 | 7.95 | 1888000 | 2.2555 |
2.4006 | 7.98 | 1896000 | 2.2653 |
2.3946 | 8.02 | 1904000 | 2.2629 |
2.3946 | 8.05 | 1912000 | 2.2654 |
2.3983 | 8.08 | 1920000 | 2.2623 |
2.3983 | 8.12 | 1928000 | 2.2544 |
2.4038 | 8.15 | 1936000 | 2.2605 |
2.4038 | 8.19 | 1944000 | 2.2622 |
2.399 | 8.22 | 1952000 | 2.2600 |
2.399 | 8.25 | 1960000 | 2.2629 |
2.3983 | 8.29 | 1968000 | 2.2621 |
2.3983 | 8.32 | 1976000 | 2.2609 |
2.4059 | 8.35 | 1984000 | 2.2705 |
2.4059 | 8.39 | 1992000 | 2.2572 |
2.4058 | 8.42 | 2000000 | 2.2602 |
2.4058 | 8.45 | 2008000 | 2.2626 |
2.3954 | 8.49 | 2016000 | 2.2668 |
2.3954 | 8.52 | 2024000 | 2.2599 |
2.3932 | 8.56 | 2032000 | 2.2643 |
2.3932 | 8.59 | 2040000 | 2.2559 |
2.4001 | 8.62 | 2048000 | 2.2614 |
2.4001 | 8.66 | 2056000 | 2.2577 |
2.3912 | 8.69 | 2064000 | 2.2665 |
2.3912 | 8.72 | 2072000 | 2.2576 |
2.4015 | 8.76 | 2080000 | 2.2672 |
2.4015 | 8.79 | 2088000 | 2.2598 |
2.4015 | 8.83 | 2096000 | 2.2599 |
2.4015 | 8.86 | 2104000 | 2.2641 |
2.399 | 8.89 | 2112000 | 2.2612 |
2.399 | 8.93 | 2120000 | 2.2607 |
2.3963 | 8.96 | 2128000 | 2.2633 |
2.3963 | 8.99 | 2136000 | 2.2567 |
2.3957 | 9.03 | 2144000 | 2.2630 |
2.3957 | 9.06 | 2152000 | 2.2597 |
2.3943 | 9.09 | 2160000 | 2.2624 |
2.3943 | 9.13 | 2168000 | 2.2599 |
2.4025 | 9.16 | 2176000 | 2.2578 |
2.4025 | 9.2 | 2184000 | 2.2640 |
2.3944 | 9.23 | 2192000 | 2.2562 |
2.3944 | 9.26 | 2200000 | 2.2660 |
2.3964 | 9.3 | 2208000 | 2.2556 |
2.3964 | 9.33 | 2216000 | 2.2697 |
2.4026 | 9.36 | 2224000 | 2.2652 |
2.4026 | 9.4 | 2232000 | 2.2571 |
2.398 | 9.43 | 2240000 | 2.2555 |
2.398 | 9.47 | 2248000 | 2.2607 |
2.4038 | 9.5 | 2256000 | 2.2558 |
2.4038 | 9.53 | 2264000 | 2.2660 |
2.4027 | 9.57 | 2272000 | 2.2587 |
2.4027 | 9.6 | 2280000 | 2.2605 |
2.4025 | 9.63 | 2288000 | 2.2578 |
2.4025 | 9.67 | 2296000 | 2.2609 |
2.3969 | 9.7 | 2304000 | 2.2597 |
2.3969 | 9.73 | 2312000 | 2.2619 |
2.3886 | 9.77 | 2320000 | 2.2645 |
2.3886 | 9.8 | 2328000 | 2.2717 |
2.3942 | 9.84 | 2336000 | 2.2627 |
2.3942 | 9.87 | 2344000 | 2.2582 |
2.396 | 9.9 | 2352000 | 2.2634 |
2.396 | 9.94 | 2360000 | 2.2582 |
2.3998 | 9.97 | 2368000 | 2.2643 |
2.3998 | 10.0 | 2376000 | 2.2690 |
2.4014 | 10.04 | 2384000 | 2.2655 |
2.4014 | 10.07 | 2392000 | 2.2660 |
2.4004 | 10.11 | 2400000 | 2.2650 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DouglasPontes/2020-Q4-50p-filtered-random
Base model
cardiffnlp/twitter-roberta-base-2019-90m