2020-Q4-50p-filtered-random-prog_from_Q3
This model is a fine-tuned version of DouglasPontes/2020-Q3-50p-filtered-random on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2400000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.03 | 8000 | 2.3816 |
2.5089 | 0.07 | 16000 | 2.3647 |
2.5089 | 0.1 | 24000 | 2.3552 |
2.4989 | 0.13 | 32000 | 2.3528 |
2.4989 | 0.17 | 40000 | 2.3486 |
2.4836 | 0.2 | 48000 | 2.3463 |
2.4836 | 0.24 | 56000 | 2.3411 |
2.4904 | 0.27 | 64000 | 2.3394 |
2.4904 | 0.3 | 72000 | 2.3350 |
2.4733 | 0.34 | 80000 | 2.3309 |
2.4733 | 0.37 | 88000 | 2.3289 |
2.4675 | 0.4 | 96000 | 2.3381 |
2.4675 | 0.44 | 104000 | 2.3317 |
2.4762 | 0.47 | 112000 | 2.3218 |
2.4762 | 0.51 | 120000 | 2.3267 |
2.4616 | 0.54 | 128000 | 2.3241 |
2.4616 | 0.57 | 136000 | 2.3281 |
2.4601 | 0.61 | 144000 | 2.3152 |
2.4601 | 0.64 | 152000 | 2.3243 |
2.4563 | 0.67 | 160000 | 2.3202 |
2.4563 | 0.71 | 168000 | 2.3193 |
2.459 | 0.74 | 176000 | 2.3182 |
2.459 | 0.77 | 184000 | 2.3247 |
2.4639 | 0.81 | 192000 | 2.3201 |
2.4639 | 0.84 | 200000 | 2.3243 |
2.4561 | 0.88 | 208000 | 2.3218 |
2.4561 | 0.91 | 216000 | 2.3137 |
2.4556 | 0.94 | 224000 | 2.3180 |
2.4556 | 0.98 | 232000 | 2.3147 |
2.4573 | 1.01 | 240000 | 2.3100 |
2.4573 | 1.04 | 248000 | 2.3118 |
2.4516 | 1.08 | 256000 | 2.3158 |
2.4516 | 1.11 | 264000 | 2.3133 |
2.4561 | 1.15 | 272000 | 2.3065 |
2.4561 | 1.18 | 280000 | 2.3183 |
2.4476 | 1.21 | 288000 | 2.3106 |
2.4476 | 1.25 | 296000 | 2.3131 |
2.4503 | 1.28 | 304000 | 2.3104 |
2.4503 | 1.31 | 312000 | 2.3101 |
2.4495 | 1.35 | 320000 | 2.3086 |
2.4495 | 1.38 | 328000 | 2.3057 |
2.4534 | 1.41 | 336000 | 2.3086 |
2.4534 | 1.45 | 344000 | 2.3093 |
2.4486 | 1.48 | 352000 | 2.3018 |
2.4486 | 1.52 | 360000 | 2.3060 |
2.4457 | 1.55 | 368000 | 2.3083 |
2.4457 | 1.58 | 376000 | 2.3110 |
2.4443 | 1.62 | 384000 | 2.2975 |
2.4443 | 1.65 | 392000 | 2.3009 |
2.4405 | 1.68 | 400000 | 2.3067 |
2.4405 | 1.72 | 408000 | 2.3027 |
2.4531 | 1.75 | 416000 | 2.3050 |
2.4531 | 1.79 | 424000 | 2.3026 |
2.4539 | 1.82 | 432000 | 2.2929 |
2.4539 | 1.85 | 440000 | 2.3051 |
2.4499 | 1.89 | 448000 | 2.3035 |
2.4499 | 1.92 | 456000 | 2.3011 |
2.4401 | 1.95 | 464000 | 2.2920 |
2.4401 | 1.99 | 472000 | 2.2999 |
2.4401 | 2.02 | 480000 | 2.3034 |
2.4401 | 2.05 | 488000 | 2.3021 |
2.4433 | 2.09 | 496000 | 2.3102 |
2.4433 | 2.12 | 504000 | 2.2985 |
2.4445 | 2.16 | 512000 | 2.3018 |
2.4445 | 2.19 | 520000 | 2.2996 |
2.4379 | 2.22 | 528000 | 2.3006 |
2.4379 | 2.26 | 536000 | 2.2970 |
2.4454 | 2.29 | 544000 | 2.3014 |
2.4454 | 2.32 | 552000 | 2.2992 |
2.4457 | 2.36 | 560000 | 2.2962 |
2.4457 | 2.39 | 568000 | 2.3009 |
2.4354 | 2.43 | 576000 | 2.2960 |
2.4354 | 2.46 | 584000 | 2.3008 |
2.4361 | 2.49 | 592000 | 2.2898 |
2.4361 | 2.53 | 600000 | 2.3060 |
2.4377 | 2.56 | 608000 | 2.2990 |
2.4377 | 2.59 | 616000 | 2.2989 |
2.4416 | 2.63 | 624000 | 2.2969 |
2.4416 | 2.66 | 632000 | 2.2933 |
2.434 | 2.69 | 640000 | 2.2998 |
2.434 | 2.73 | 648000 | 2.2948 |
2.433 | 2.76 | 656000 | 2.2892 |
2.433 | 2.8 | 664000 | 2.2929 |
2.44 | 2.83 | 672000 | 2.2973 |
2.44 | 2.86 | 680000 | 2.2926 |
2.4291 | 2.9 | 688000 | 2.2990 |
2.4291 | 2.93 | 696000 | 2.2937 |
2.4336 | 2.96 | 704000 | 2.2894 |
2.4336 | 3.0 | 712000 | 2.2958 |
2.439 | 3.03 | 720000 | 2.2956 |
2.439 | 3.07 | 728000 | 2.2928 |
2.4405 | 3.1 | 736000 | 2.2956 |
2.4405 | 3.13 | 744000 | 2.2905 |
2.4332 | 3.17 | 752000 | 2.2921 |
2.4332 | 3.2 | 760000 | 2.2907 |
2.4353 | 3.23 | 768000 | 2.2879 |
2.4353 | 3.27 | 776000 | 2.2929 |
2.4273 | 3.3 | 784000 | 2.2953 |
2.4273 | 3.33 | 792000 | 2.2917 |
2.4233 | 3.37 | 800000 | 2.2947 |
2.4233 | 3.4 | 808000 | 2.2943 |
2.4324 | 3.44 | 816000 | 2.2940 |
2.4324 | 3.47 | 824000 | 2.2911 |
2.4461 | 3.5 | 832000 | 2.2920 |
2.4461 | 3.54 | 840000 | 2.2911 |
2.4267 | 3.57 | 848000 | 2.2940 |
2.4267 | 3.6 | 856000 | 2.2890 |
2.4313 | 3.64 | 864000 | 2.2913 |
2.4313 | 3.67 | 872000 | 2.2967 |
2.4388 | 3.71 | 880000 | 2.2907 |
2.4388 | 3.74 | 888000 | 2.2952 |
2.4326 | 3.77 | 896000 | 2.2873 |
2.4326 | 3.81 | 904000 | 2.2871 |
2.4312 | 3.84 | 912000 | 2.2880 |
2.4312 | 3.87 | 920000 | 2.2941 |
2.4398 | 3.91 | 928000 | 2.2925 |
2.4398 | 3.94 | 936000 | 2.2965 |
2.441 | 3.97 | 944000 | 2.2890 |
2.441 | 4.01 | 952000 | 2.2946 |
2.4345 | 4.04 | 960000 | 2.2910 |
2.4345 | 4.08 | 968000 | 2.2792 |
2.4332 | 4.11 | 976000 | 2.2856 |
2.4332 | 4.14 | 984000 | 2.2879 |
2.4375 | 4.18 | 992000 | 2.2861 |
2.4375 | 4.21 | 1000000 | 2.2892 |
2.4282 | 4.24 | 1008000 | 2.2894 |
2.4282 | 4.28 | 1016000 | 2.2902 |
2.4231 | 4.31 | 1024000 | 2.2830 |
2.4231 | 4.35 | 1032000 | 2.2948 |
2.4299 | 4.38 | 1040000 | 2.2915 |
2.4299 | 4.41 | 1048000 | 2.2922 |
2.4353 | 4.45 | 1056000 | 2.2876 |
2.4353 | 4.48 | 1064000 | 2.2893 |
2.4308 | 4.51 | 1072000 | 2.2920 |
2.4308 | 4.55 | 1080000 | 2.2860 |
2.4358 | 4.58 | 1088000 | 2.2907 |
2.4358 | 4.61 | 1096000 | 2.2808 |
2.4341 | 4.65 | 1104000 | 2.2902 |
2.4341 | 4.68 | 1112000 | 2.2815 |
2.4315 | 4.72 | 1120000 | 2.2961 |
2.4315 | 4.75 | 1128000 | 2.2885 |
2.434 | 4.78 | 1136000 | 2.2917 |
2.434 | 4.82 | 1144000 | 2.2851 |
2.4324 | 4.85 | 1152000 | 2.2837 |
2.4324 | 4.88 | 1160000 | 2.2883 |
2.4297 | 4.92 | 1168000 | 2.2824 |
2.4297 | 4.95 | 1176000 | 2.2832 |
2.436 | 4.99 | 1184000 | 2.2865 |
2.436 | 5.02 | 1192000 | 2.2816 |
2.4329 | 5.05 | 1200000 | 2.2862 |
2.4329 | 5.09 | 1208000 | 2.2847 |
2.4276 | 5.12 | 1216000 | 2.2951 |
2.4276 | 5.15 | 1224000 | 2.2980 |
2.4362 | 5.19 | 1232000 | 2.2889 |
2.4362 | 5.22 | 1240000 | 2.2914 |
2.4309 | 5.25 | 1248000 | 2.2915 |
2.4309 | 5.29 | 1256000 | 2.2822 |
2.4414 | 5.32 | 1264000 | 2.2871 |
2.4414 | 5.36 | 1272000 | 2.2890 |
2.4241 | 5.39 | 1280000 | 2.2844 |
2.4241 | 5.42 | 1288000 | 2.2812 |
2.4251 | 5.46 | 1296000 | 2.2874 |
2.4251 | 5.49 | 1304000 | 2.2846 |
2.4318 | 5.52 | 1312000 | 2.2831 |
2.4318 | 5.56 | 1320000 | 2.2895 |
2.4247 | 5.59 | 1328000 | 2.2796 |
2.4247 | 5.63 | 1336000 | 2.2834 |
2.4305 | 5.66 | 1344000 | 2.2811 |
2.4305 | 5.69 | 1352000 | 2.2922 |
2.4336 | 5.73 | 1360000 | 2.2830 |
2.4336 | 5.76 | 1368000 | 2.2904 |
2.428 | 5.79 | 1376000 | 2.2843 |
2.428 | 5.83 | 1384000 | 2.2804 |
2.4254 | 5.86 | 1392000 | 2.2852 |
2.4254 | 5.89 | 1400000 | 2.2858 |
2.4287 | 5.93 | 1408000 | 2.2922 |
2.4287 | 5.96 | 1416000 | 2.2847 |
2.4291 | 6.0 | 1424000 | 2.2856 |
2.4291 | 6.03 | 1432000 | 2.2876 |
2.4289 | 6.06 | 1440000 | 2.2822 |
2.4289 | 6.1 | 1448000 | 2.2787 |
2.4272 | 6.13 | 1456000 | 2.2811 |
2.4272 | 6.16 | 1464000 | 2.2853 |
2.4267 | 6.2 | 1472000 | 2.2818 |
2.4267 | 6.23 | 1480000 | 2.2765 |
2.4237 | 6.27 | 1488000 | 2.2791 |
2.4237 | 6.3 | 1496000 | 2.2768 |
2.4277 | 6.33 | 1504000 | 2.2866 |
2.4277 | 6.37 | 1512000 | 2.2821 |
2.4316 | 6.4 | 1520000 | 2.2856 |
2.4316 | 6.43 | 1528000 | 2.2820 |
2.4222 | 6.47 | 1536000 | 2.2891 |
2.4222 | 6.5 | 1544000 | 2.2803 |
2.426 | 6.53 | 1552000 | 2.2797 |
2.426 | 6.57 | 1560000 | 2.2844 |
2.422 | 6.6 | 1568000 | 2.2872 |
2.422 | 6.64 | 1576000 | 2.2904 |
2.4323 | 6.67 | 1584000 | 2.2797 |
2.4323 | 6.7 | 1592000 | 2.2757 |
2.4315 | 6.74 | 1600000 | 2.2874 |
2.4315 | 6.77 | 1608000 | 2.2763 |
2.421 | 6.8 | 1616000 | 2.2857 |
2.421 | 6.84 | 1624000 | 2.2804 |
2.4299 | 6.87 | 1632000 | 2.2825 |
2.4299 | 6.91 | 1640000 | 2.2819 |
2.4289 | 6.94 | 1648000 | 2.2824 |
2.4289 | 6.97 | 1656000 | 2.2821 |
2.4257 | 7.01 | 1664000 | 2.2802 |
2.4257 | 7.04 | 1672000 | 2.2760 |
2.4227 | 7.07 | 1680000 | 2.2810 |
2.4227 | 7.11 | 1688000 | 2.2777 |
2.4287 | 7.14 | 1696000 | 2.2772 |
2.4287 | 7.17 | 1704000 | 2.2786 |
2.4227 | 7.21 | 1712000 | 2.2859 |
2.4227 | 7.24 | 1720000 | 2.2862 |
2.4262 | 7.28 | 1728000 | 2.2789 |
2.4262 | 7.31 | 1736000 | 2.2848 |
2.4263 | 7.34 | 1744000 | 2.2754 |
2.4263 | 7.38 | 1752000 | 2.2778 |
2.4246 | 7.41 | 1760000 | 2.2735 |
2.4246 | 7.44 | 1768000 | 2.2827 |
2.4147 | 7.48 | 1776000 | 2.2850 |
2.4147 | 7.51 | 1784000 | 2.2821 |
2.4288 | 7.55 | 1792000 | 2.2803 |
2.4288 | 7.58 | 1800000 | 2.2760 |
2.4231 | 7.61 | 1808000 | 2.2749 |
2.4231 | 7.65 | 1816000 | 2.2749 |
2.4243 | 7.68 | 1824000 | 2.2743 |
2.4243 | 7.71 | 1832000 | 2.2792 |
2.4215 | 7.75 | 1840000 | 2.2752 |
2.4215 | 7.78 | 1848000 | 2.2770 |
2.4213 | 7.81 | 1856000 | 2.2802 |
2.4213 | 7.85 | 1864000 | 2.2796 |
2.4236 | 7.88 | 1872000 | 2.2883 |
2.4236 | 7.92 | 1880000 | 2.2792 |
2.4237 | 7.95 | 1888000 | 2.2726 |
2.4237 | 7.98 | 1896000 | 2.2816 |
2.4183 | 8.02 | 1904000 | 2.2790 |
2.4183 | 8.05 | 1912000 | 2.2815 |
2.4215 | 8.08 | 1920000 | 2.2774 |
2.4215 | 8.12 | 1928000 | 2.2700 |
2.4258 | 8.15 | 1936000 | 2.2763 |
2.4258 | 8.19 | 1944000 | 2.2786 |
2.4209 | 8.22 | 1952000 | 2.2763 |
2.4209 | 8.25 | 1960000 | 2.2789 |
2.4217 | 8.29 | 1968000 | 2.2784 |
2.4217 | 8.32 | 1976000 | 2.2773 |
2.4279 | 8.35 | 1984000 | 2.2861 |
2.4279 | 8.39 | 1992000 | 2.2728 |
2.4268 | 8.42 | 2000000 | 2.2762 |
2.4268 | 8.45 | 2008000 | 2.2789 |
2.4177 | 8.49 | 2016000 | 2.2822 |
2.4177 | 8.52 | 2024000 | 2.2759 |
2.4166 | 8.56 | 2032000 | 2.2792 |
2.4166 | 8.59 | 2040000 | 2.2721 |
2.4223 | 8.62 | 2048000 | 2.2768 |
2.4223 | 8.66 | 2056000 | 2.2726 |
2.4139 | 8.69 | 2064000 | 2.2825 |
2.4139 | 8.72 | 2072000 | 2.2739 |
2.4236 | 8.76 | 2080000 | 2.2834 |
2.4236 | 8.79 | 2088000 | 2.2750 |
2.4235 | 8.83 | 2096000 | 2.2752 |
2.4235 | 8.86 | 2104000 | 2.2803 |
2.4193 | 8.89 | 2112000 | 2.2763 |
2.4193 | 8.93 | 2120000 | 2.2755 |
2.4179 | 8.96 | 2128000 | 2.2794 |
2.4179 | 8.99 | 2136000 | 2.2711 |
2.4181 | 9.03 | 2144000 | 2.2792 |
2.4181 | 9.06 | 2152000 | 2.2752 |
2.4173 | 9.09 | 2160000 | 2.2775 |
2.4173 | 9.13 | 2168000 | 2.2752 |
2.4242 | 9.16 | 2176000 | 2.2729 |
2.4242 | 9.2 | 2184000 | 2.2793 |
2.4166 | 9.23 | 2192000 | 2.2719 |
2.4166 | 9.26 | 2200000 | 2.2820 |
2.4181 | 9.3 | 2208000 | 2.2716 |
2.4181 | 9.33 | 2216000 | 2.2855 |
2.4245 | 9.36 | 2224000 | 2.2805 |
2.4245 | 9.4 | 2232000 | 2.2721 |
2.4204 | 9.43 | 2240000 | 2.2707 |
2.4204 | 9.47 | 2248000 | 2.2767 |
2.4255 | 9.5 | 2256000 | 2.2710 |
2.4255 | 9.53 | 2264000 | 2.2814 |
2.4254 | 9.57 | 2272000 | 2.2746 |
2.4254 | 9.6 | 2280000 | 2.2766 |
2.4232 | 9.63 | 2288000 | 2.2725 |
2.4232 | 9.67 | 2296000 | 2.2765 |
2.4189 | 9.7 | 2304000 | 2.2756 |
2.4189 | 9.73 | 2312000 | 2.2768 |
2.4105 | 9.77 | 2320000 | 2.2804 |
2.4105 | 9.8 | 2328000 | 2.2873 |
2.415 | 9.84 | 2336000 | 2.2783 |
2.415 | 9.87 | 2344000 | 2.2737 |
2.4174 | 9.9 | 2352000 | 2.2786 |
2.4174 | 9.94 | 2360000 | 2.2730 |
2.4199 | 9.97 | 2368000 | 2.2794 |
2.4199 | 10.0 | 2376000 | 2.2848 |
2.4224 | 10.04 | 2384000 | 2.2811 |
2.4224 | 10.07 | 2392000 | 2.2818 |
2.4226 | 10.11 | 2400000 | 2.2798 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DouglasPontes/2020-Q4-50p-filtered-random-prog_from_Q3
Base model
cardiffnlp/twitter-roberta-base-2019-90m