2020-Q3-full_tweets

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.03 8000 2.2197
2.3934 0.07 16000 2.1429
2.3934 0.1 24000 2.1001
2.2294 0.13 32000 2.0762
2.2294 0.17 40000 2.0515
2.1835 0.2 48000 2.0435
2.1835 0.24 56000 2.0346
2.1517 0.27 64000 2.0254
2.1517 0.3 72000 2.0175
2.1381 0.34 80000 2.0077
2.1381 0.37 88000 2.0029
2.1244 0.4 96000 2.0011
2.1244 0.44 104000 1.9980
2.1116 0.47 112000 1.9901
2.1116 0.51 120000 1.9840
2.1104 0.54 128000 1.9885
2.1104 0.57 136000 1.9855
2.1031 0.61 144000 1.9829
2.1031 0.64 152000 1.9813
2.0971 0.67 160000 1.9812
2.0971 0.71 168000 1.9795
2.1044 0.74 176000 1.9738
2.1044 0.77 184000 1.9768
2.0928 0.81 192000 1.9786
2.0928 0.84 200000 1.9699
2.0949 0.88 208000 1.9700
2.0949 0.91 216000 1.9653
2.0892 0.94 224000 1.9681
2.0892 0.98 232000 1.9650
2.0841 1.01 240000 1.9638
2.0841 1.04 248000 1.9682
2.0887 1.08 256000 1.9605
2.0887 1.11 264000 1.9614
2.0842 1.15 272000 1.9624
2.0842 1.18 280000 1.9605
2.0773 1.21 288000 1.9554
2.0773 1.25 296000 1.9578
2.0795 1.28 304000 1.9572
2.0795 1.31 312000 1.9521
2.0794 1.35 320000 1.9551
2.0794 1.38 328000 1.9569
2.0788 1.41 336000 1.9571
2.0788 1.45 344000 1.9502
2.0778 1.48 352000 1.9544
2.0778 1.52 360000 1.9470
2.0694 1.55 368000 1.9545
2.0694 1.58 376000 1.9472
2.0718 1.62 384000 1.9477
2.0718 1.65 392000 1.9496
2.0787 1.68 400000 1.9440
2.0787 1.72 408000 1.9484
2.0764 1.75 416000 1.9475
2.0764 1.79 424000 1.9469
2.0795 1.82 432000 1.9474
2.0795 1.85 440000 1.9492
2.07 1.89 448000 1.9480
2.07 1.92 456000 1.9482
2.0712 1.95 464000 1.9498
2.0712 1.99 472000 1.9429
2.0739 2.02 480000 1.9456
2.0739 2.05 488000 1.9469
2.0688 2.09 496000 1.9467
2.0688 2.12 504000 1.9454
2.0706 2.16 512000 1.9440
2.0706 2.19 520000 1.9401
2.0694 2.22 528000 1.9397
2.0694 2.26 536000 1.9429
2.0698 2.29 544000 1.9484
2.0698 2.32 552000 1.9375
2.0681 2.36 560000 1.9411
2.0681 2.39 568000 1.9419
2.0676 2.43 576000 1.9373
2.0676 2.46 584000 1.9366
2.0641 2.49 592000 1.9422
2.0641 2.53 600000 1.9365
2.0692 2.56 608000 1.9417
2.0692 2.59 616000 1.9385
2.0676 2.63 624000 1.9362
2.0676 2.66 632000 1.9414
2.0657 2.69 640000 1.9437
2.0657 2.73 648000 1.9356
2.0638 2.76 656000 1.9353
2.0638 2.8 664000 1.9385
2.0673 2.83 672000 1.9359
2.0673 2.86 680000 1.9314
2.0634 2.9 688000 1.9294
2.0634 2.93 696000 1.9346
2.0643 2.96 704000 1.9335
2.0643 3.0 712000 1.9316
2.0596 3.03 720000 1.9356
2.0596 3.07 728000 1.9390
2.0637 3.1 736000 1.9397
2.0637 3.13 744000 1.9375
2.0637 3.17 752000 1.9352
2.0637 3.2 760000 1.9310
2.0681 3.23 768000 1.9316
2.0681 3.27 776000 1.9269
2.0663 3.3 784000 1.9301
2.0663 3.33 792000 1.9354
2.0653 3.37 800000 1.9373
2.0653 3.4 808000 1.9354
2.0606 3.44 816000 1.9286
2.0606 3.47 824000 1.9318
2.0601 3.5 832000 1.9287
2.0601 3.54 840000 1.9280
2.0555 3.57 848000 1.9279
2.0555 3.6 856000 1.9297
2.0561 3.64 864000 1.9290
2.0561 3.67 872000 1.9252
2.066 3.71 880000 1.9274
2.066 3.74 888000 1.9257
2.0634 3.77 896000 1.9290
2.0634 3.81 904000 1.9267
2.0613 3.84 912000 1.9295
2.0613 3.87 920000 1.9300
2.0599 3.91 928000 1.9326
2.0599 3.94 936000 1.9313
2.0592 3.97 944000 1.9237
2.0592 4.01 952000 1.9272
2.0602 4.04 960000 1.9261
2.0602 4.08 968000 1.9283
2.0575 4.11 976000 1.9294
2.0575 4.14 984000 1.9284
2.0585 4.18 992000 1.9263
2.0585 4.21 1000000 1.9227
2.0535 4.24 1008000 1.9251
2.0535 4.28 1016000 1.9273
2.062 4.31 1024000 1.9242
2.062 4.35 1032000 1.9242
2.0606 4.38 1040000 1.9255
2.0606 4.41 1048000 1.9233
2.0565 4.45 1056000 1.9243
2.0565 4.48 1064000 1.9272
2.0538 4.51 1072000 1.9308
2.0538 4.55 1080000 1.9236
2.0573 4.58 1088000 1.9246
2.0573 4.61 1096000 1.9237
2.0562 4.65 1104000 1.9199
2.0562 4.68 1112000 1.9235
2.0534 4.72 1120000 1.9209
2.0534 4.75 1128000 1.9215
2.0567 4.78 1136000 1.9242
2.0567 4.82 1144000 1.9272
2.0592 4.85 1152000 1.9257
2.0592 4.88 1160000 1.9228
2.0599 4.92 1168000 1.9205
2.0599 4.95 1176000 1.9190
2.0504 4.99 1184000 1.9241
2.0504 5.02 1192000 1.9214
2.0541 5.05 1200000 1.9265
2.0541 5.09 1208000 1.9250
2.0581 5.12 1216000 1.9174
2.0581 5.15 1224000 1.9232
2.057 5.19 1232000 1.9242
2.057 5.22 1240000 1.9201
2.0541 5.25 1248000 1.9187
2.0541 5.29 1256000 1.9205
2.0542 5.32 1264000 1.9178
2.0542 5.36 1272000 1.9239
2.0526 5.39 1280000 1.9185
2.0526 5.42 1288000 1.9227
2.0503 5.46 1296000 1.9223
2.0503 5.49 1304000 1.9230
2.0579 5.52 1312000 1.9143
2.0579 5.56 1320000 1.9188
2.0523 5.59 1328000 1.9170
2.0523 5.63 1336000 1.9252
2.056 5.66 1344000 1.9183
2.056 5.69 1352000 1.9237
2.0545 5.73 1360000 1.9198
2.0545 5.76 1368000 1.9225
2.0552 5.79 1376000 1.9172
2.0552 5.83 1384000 1.9179
2.0571 5.86 1392000 1.9238
2.0571 5.89 1400000 1.9189
2.0637 5.93 1408000 1.9217
2.0637 5.96 1416000 1.9190
2.0554 6.0 1424000 1.9259
2.0554 6.03 1432000 1.9184
2.0545 6.06 1440000 1.9244
2.0545 6.1 1448000 1.9201
2.0538 6.13 1456000 1.9251
2.0538 6.16 1464000 1.9216
2.058 6.2 1472000 1.9221
2.058 6.23 1480000 1.9247
2.0482 6.27 1488000 1.9209
2.0482 6.3 1496000 1.9207
2.0528 6.33 1504000 1.9177
2.0528 6.37 1512000 1.9141
2.0529 6.4 1520000 1.9213
2.0529 6.43 1528000 1.9170
2.059 6.47 1536000 1.9161
2.059 6.5 1544000 1.9164
2.056 6.53 1552000 1.9177
2.056 6.57 1560000 1.9189
2.058 6.6 1568000 1.9181
2.058 6.64 1576000 1.9214
2.0543 6.67 1584000 1.9137
2.0543 6.7 1592000 1.9181
2.0513 6.74 1600000 1.9187
2.0513 6.77 1608000 1.9176
2.0587 6.8 1616000 1.9145
2.0587 6.84 1624000 1.9192
2.053 6.87 1632000 1.9202
2.053 6.91 1640000 1.9183
2.0543 6.94 1648000 1.9163
2.0543 6.97 1656000 1.9171
2.0492 7.01 1664000 1.9183
2.0492 7.04 1672000 1.9172
2.0505 7.07 1680000 1.9190
2.0505 7.11 1688000 1.9181
2.0548 7.14 1696000 1.9160
2.0548 7.17 1704000 1.9168
2.0524 7.21 1712000 1.9155
2.0524 7.24 1720000 1.9161
2.0539 7.28 1728000 1.9189
2.0539 7.31 1736000 1.9169
2.0542 7.34 1744000 1.9177
2.0542 7.38 1752000 1.9140
2.0509 7.41 1760000 1.9152
2.0509 7.44 1768000 1.9160
2.0507 7.48 1776000 1.9156
2.0507 7.51 1784000 1.9139
2.057 7.55 1792000 1.9140
2.057 7.58 1800000 1.9248
2.0515 7.61 1808000 1.9143
2.0515 7.65 1816000 1.9188
2.0503 7.68 1824000 1.9127
2.0503 7.71 1832000 1.9132
2.0534 7.75 1840000 1.9129
2.0534 7.78 1848000 1.9195
2.0553 7.81 1856000 1.9157
2.0553 7.85 1864000 1.9177
2.0496 7.88 1872000 1.9148
2.0496 7.92 1880000 1.9132
2.0537 7.95 1888000 1.9184
2.0537 7.98 1896000 1.9160
2.0505 8.02 1904000 1.9151
2.0505 8.05 1912000 1.9210
2.0536 8.08 1920000 1.9173
2.0536 8.12 1928000 1.9139
2.0493 8.15 1936000 1.9209
2.0493 8.19 1944000 1.9151
2.052 8.22 1952000 1.9174
2.052 8.25 1960000 1.9146
2.0575 8.29 1968000 1.9169
2.0575 8.32 1976000 1.9173
2.0499 8.35 1984000 1.9175
2.0499 8.39 1992000 1.9136
2.0573 8.42 2000000 1.9159
2.0573 8.45 2008000 1.9148
2.0556 8.49 2016000 1.9174
2.0556 8.52 2024000 1.9146
2.0558 8.56 2032000 1.9152
2.0558 8.59 2040000 1.9125
2.0493 8.62 2048000 1.9156
2.0493 8.66 2056000 1.9121
2.0492 8.69 2064000 1.9227
2.0492 8.72 2072000 1.9136
2.0576 8.76 2080000 1.9147
2.0576 8.79 2088000 1.9159
2.0512 8.83 2096000 1.9116
2.0512 8.86 2104000 1.9159
2.05 8.89 2112000 1.9130
2.05 8.93 2120000 1.9152
2.0437 8.96 2128000 1.9176
2.0437 8.99 2136000 1.9193
2.053 9.03 2144000 1.9124
2.053 9.06 2152000 1.9139
2.0496 9.09 2160000 1.9128
2.0496 9.13 2168000 1.9162
2.0495 9.16 2176000 1.9065
2.0495 9.2 2184000 1.9211
2.0468 9.23 2192000 1.9095
2.0468 9.26 2200000 1.9163
2.0507 9.3 2208000 1.9106
2.0507 9.33 2216000 1.9165
2.0526 9.36 2224000 1.9179
2.0526 9.4 2232000 1.9178
2.0537 9.43 2240000 1.9163
2.0537 9.47 2248000 1.9159
2.0502 9.5 2256000 1.9146
2.0502 9.53 2264000 1.9169
2.0492 9.57 2272000 1.9164
2.0492 9.6 2280000 1.9154
2.0505 9.63 2288000 1.9066
2.0505 9.67 2296000 1.9140
2.0516 9.7 2304000 1.9125
2.0516 9.73 2312000 1.9184
2.0559 9.77 2320000 1.9178
2.0559 9.8 2328000 1.9164
2.0528 9.84 2336000 1.9087
2.0528 9.87 2344000 1.9165
2.0559 9.9 2352000 1.9113
2.0559 9.94 2360000 1.9146
2.058 9.97 2368000 1.9156
2.058 10.0 2376000 1.9137
2.053 10.04 2384000 1.9081
2.053 10.07 2392000 1.9148
2.0566 10.11 2400000 1.9142

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DouglasPontes/2020-Q3-full_tweets

Finetuned
(34)
this model