DouglasBraga's picture
Model save
0965489 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: >-
      swin-tiny-patch4-window7-224-swin-tiny-patch4-window7-224-finetuned-leukemia.v2.1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.954

swin-tiny-patch4-window7-224-swin-tiny-patch4-window7-224-finetuned-leukemia.v2.1

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1379
  • Accuracy: 0.954

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4215 0.9991 281 0.3880 0.8293
0.3137 1.9982 562 0.2898 0.8788
0.2631 2.9973 843 0.2382 0.907
0.2338 4.0 1125 0.4090 0.8575
0.1834 4.9991 1406 0.2477 0.8985
0.2065 5.9982 1687 0.1331 0.9513
0.1555 6.9973 1968 0.1304 0.9473
0.1521 8.0 2250 0.1837 0.9293
0.1512 8.9991 2531 0.1708 0.9405
0.119 9.9911 2810 0.1379 0.954

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1