The license is cc-by-nc-sa-4.0
.
(์ฃผ)๋ฏธ๋์ด๊ทธ๋ฃน์ฌ๋๊ณผ์ฒ๊ณผ (์ฃผ)๋ง์ปค์ LLM ์ฐ๊ตฌ ์ปจ์์์์ผ๋ก ๊ฐ๋ฐ๋ ๋ชจ๋ธ์ ๋๋ค
๐ปโโ๏ธCOKAL_merged_test-v1-13B๐ปโโ๏ธ
Model Details
Model Developers Seungyoo Lee(DopeorNope)
Input Models input text only.
Output Models generate text only.
Model Architecture
COKAL_merged_test-v1-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
Base Model
HumanF-MarkrAI/COKAL-DPO-13b-v2
MarkrAI/DopeorNope-maestro-v2-DPO-13b
Implemented Method
I utilized slerp merge
to smoothly blend the gradients of the base models to create it.
The merging approach relies on some luck, but at the same time, if I have an accurate understanding of my model's performance, I can carefully select models that excel in each aspect to develop a well-balanced model.
Thanks to maywell for sharing useful tips related to the merge method.
Model Benchmark
KO-LLM leaderboard
- Follow up as Open KO-LLM LeaderBoard.
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
COKAL_merged_test-v1-13B๐ปโโ๏ธ | 52.72 | 51.45 | 60.55 | 44.8 | 49.05 | 57.73 |
COKAL-DPO-13b-v2๐ปโโ๏ธ | 52.69 | 54.95 | 63.02 | 43.98 | 51.67 | 49.82 |
COKAL-DPO_test-v2-13b๐ปโโ๏ธ | 52.67 | 55.63 | 63.5 | 43.49 | 51.5 | 49.23 |
hyeogi/Yi-6b-dpo-v0.2 | 52.63 | 41.72 | 52.96 | 46.69 | 52.38 | 69.42 |
DopeorNope-maestro-v2-DPO-13b๐ปโโ๏ธ | 49.42 | 45.14 | 56.69 | 41.37 | 42.26 | 61.63 |
Implementation Code
Load model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "DopeorNope/COKAL_merged_test-v1-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Prompt (Alpaca format)
prompt= f"์๋๋ ๋ฌธ์ ๋ฅผ ์ค๋ช
ํ๋ ์ง์์ฌํญ๊ณผ, ๊ตฌ์ฒด์ ์ธ ๋ต๋ณ์ ๋ฐฉ์์ ์๊ตฌํ๋ ์
๋ ฅ์ด ํจ๊ป ์๋ ๋ฌธ์ฅ์
๋๋ค. ์ด ์์ฒญ์ ๋ํด ์ ์ ํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์.\n\n### ์ง์์ฌํญ:\n{instruction}\n\n### ์
๋ ฅ:\n{input}\n\n### ๋ต๋ณ:\n"
prompt_no_input = f"์๋๋ ๋ฌธ์ ๋ฅผ ์ค๋ช
ํ๋ ์ง์์ฌํญ์
๋๋ค. ์ด ์์ฒญ์ ๋ํด ์ ์ ํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์.\n\n### ์ง์์ฌํญ:\n{instruction}\n\n### ๋ต๋ณ:\n"
Acknowledgement
์ด ๋ชจ๋ธ์ ๊ณผํ๊ธฐ์ ์ ๋ณดํต์ ๋ถยท๊ด์ฃผ๊ด์ญ์๊ฐ ๊ณต๋ ์ง์ํ '์ธ๊ณต์ง๋ฅ ์ค์ฌ ์ฐ์ ์ตํฉ ์ง์ ๋จ์ง ์กฐ์ฑ์ฌ์ '์ผ๋ก ์ง์์ ๋ฐ์ ์ํ๋ ์ฐ๊ตฌ ๊ฒฐ๊ณผ์ ๋๋ค.
This model was supported by Artificial intelligence industrial convergence cluster development project funded by the Ministry of Science and ICT(MSIT, Korea)&Gwangju Metropolitan City.
- Downloads last month
- 880