The license is cc-by-nc-sa-4.0.

(์ฃผ)๋ฏธ๋””์–ด๊ทธ๋ฃน์‚ฌ๋žŒ๊ณผ์ˆฒ๊ณผ (์ฃผ)๋งˆ์ปค์˜ LLM ์—ฐ๊ตฌ ์ปจ์†Œ์‹œ์—„์œผ๋กœ ๊ฐœ๋ฐœ๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค

๐Ÿปโ€โ„๏ธCOKAL_merged_test-v1-13B๐Ÿปโ€โ„๏ธ

img

Model Details

Model Developers Seungyoo Lee(DopeorNope)

Input Models input text only.

Output Models generate text only.

Model Architecture
COKAL_merged_test-v1-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.


Base Model

HumanF-MarkrAI/COKAL-DPO-13b-v2

MarkrAI/DopeorNope-maestro-v2-DPO-13b

Implemented Method

I utilized slerp merge to smoothly blend the gradients of the base models to create it.

The merging approach relies on some luck, but at the same time, if I have an accurate understanding of my model's performance, I can carefully select models that excel in each aspect to develop a well-balanced model.

Thanks to maywell for sharing useful tips related to the merge method.


Model Benchmark

KO-LLM leaderboard

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
COKAL_merged_test-v1-13B๐Ÿปโ€โ„๏ธ 52.72 51.45 60.55 44.8 49.05 57.73
COKAL-DPO-13b-v2๐Ÿปโ€โ„๏ธ 52.69 54.95 63.02 43.98 51.67 49.82
COKAL-DPO_test-v2-13b๐Ÿปโ€โ„๏ธ 52.67 55.63 63.5 43.49 51.5 49.23
hyeogi/Yi-6b-dpo-v0.2 52.63 41.72 52.96 46.69 52.38 69.42
DopeorNope-maestro-v2-DPO-13b๐Ÿปโ€โ„๏ธ 49.42 45.14 56.69 41.37 42.26 61.63

Implementation Code

Load model


from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "DopeorNope/COKAL_merged_test-v1-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Prompt (Alpaca format)


prompt= f"์•„๋ž˜๋Š” ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์ง€์‹œ์‚ฌํ•ญ๊ณผ, ๊ตฌ์ฒด์ ์ธ ๋‹ต๋ณ€์„ ๋ฐฉ์‹์„ ์š”๊ตฌํ•˜๋Š” ์ž…๋ ฅ์ด ํ•จ๊ป˜ ์žˆ๋Š” ๋ฌธ์žฅ์ž…๋‹ˆ๋‹ค. ์ด ์š”์ฒญ์— ๋Œ€ํ•ด ์ ์ ˆํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”.\n\n### ์ง€์‹œ์‚ฌํ•ญ:\n{instruction}\n\n### ์ž…๋ ฅ:\n{input}\n\n### ๋‹ต๋ณ€:\n"

prompt_no_input = f"์•„๋ž˜๋Š” ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์ง€์‹œ์‚ฌํ•ญ์ž…๋‹ˆ๋‹ค. ์ด ์š”์ฒญ์— ๋Œ€ํ•ด ์ ์ ˆํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”.\n\n### ์ง€์‹œ์‚ฌํ•ญ:\n{instruction}\n\n### ๋‹ต๋ณ€:\n"

Acknowledgement

  • ์ด ๋ชจ๋ธ์€ ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€ยท๊ด‘์ฃผ๊ด‘์—ญ์‹œ๊ฐ€ ๊ณต๋™ ์ง€์›ํ•œ '์ธ๊ณต์ง€๋Šฅ ์ค‘์‹ฌ ์‚ฐ์—…์œตํ•ฉ ์ง‘์ ๋‹จ์ง€ ์กฐ์„ฑ์‚ฌ์—…'์œผ๋กœ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.

  • This model was supported by Artificial intelligence industrial convergence cluster development project funded by the Ministry of Science and ICT(MSIT, Korea)&Gwangju Metropolitan City.


Downloads last month
880
Safetensors
Model size
13.2B params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DopeorNope/COKAL_merged_test-v1-13B

Quantizations
1 model

Collection including DopeorNope/COKAL_merged_test-v1-13B