metadata
license: other
license_name: fair-ai-public-license-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
pipeline_tag: text-to-image
tags:
- safetensors
- diffusers
- stable-diffusion
- stable-diffusion-xl
- art
library_name: diffusers
NoobAI-XL-Merges
Various merges built on Laxhar Lab's Illustrious-xl-based text to image model, uploaded for testing purposes.
These are provided as-is, and YMMV. The user is responsible for any outputs produced using these checkpoints.
Other models involved in these merges include:
Methods
Perpendicular merges are done via sd-mecha using the Python API, for example:
1) Merge noobaiXLNAIXL_vPred10Version-cyberrealistic4-perpendicular
import sd_mecha
sd_mecha.set_log_level()
text_encoder_recipe = sd_mecha.model("noobaiXLNAIXL_vPred10Version.safetensors", "sdxl")
unet_recipe = sd_mecha.add_perpendicular(
sd_mecha.model("noobaiXLNAIXL_vPred10Version.safetensors", "sdxl"),
sd_mecha.model("cyberrealisticXL_v4.safetensors", "sdxl"),
sd_mecha.model("sd_xl_base_1.0_0.9vae.safetensors", "sdxl"),
)
recipe = sd_mecha.weighted_sum(
text_encoder_recipe,
unet_recipe,
alpha=(
sd_mecha.blocks("sdxl", "txt") |
sd_mecha.blocks("sdxl", "txt2") |
sd_mecha.default("sdxl", "unet", 1)
),
)
merger = sd_mecha.RecipeMerger(
models_dir=r"C:\path\to\models\directory",
)
merger.merge_and_save(recipe, output="output.safetensors")
2) Add v_pred and ztsnr keys to the resulting model for autodetection in Comfy/Forge
from safetensors.torch import load_file, save_file
import torch
state_dict = load_file("output.safetensors")
state_dict["v_pred"] = torch.tensor([])
state_dict["ztsnr"] = torch.tensor([])
save_file(state_dict, "noobaiXLNAIXL_vPred10Version-cyberrealistic4-perpendicular.safetensors")