Short Description
The rubert-tiny2-russian-emotion-detection is a fine-tuned rubert-tiny2 model for multi-label emotion classification task, specifically on Russian texts. Trained on custom ru-izard-emotions dataset, so this model can recognize a spectrum of 9 emotions, including joy, sadness, anger, enthusiasm, surprise, disgust, fear, guilt, shame + neutral (no emotion). Project was inspired by the Izard's model of human emotions.
For more information about model, please check Github repository
Training Parameters:
Optimizer: AdamW
Schedule: LambdaLR
Learning Rate: 1e-4
Batch Size: 64
Number Of Epochs: 10
Emotion Categories:
0. Neutral (Нейтрально)
1. Joy (Радость)
2. Sadness (Грусть)
3. Anger (Гнев)
4. Enthusiasm (Интерес)
5. Surprise (Удивление)
6. Disgust (Отвращение)
7. Fear (Страх)
8. Guilt (Вина)
9. Shame (Стыд)
Test results:
Neutral | Joy | Sadness | Anger | Enthusiasm | Surprise | Disgust | Fear | Guilt | Shame | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|
AUC | 0.7319 | 0.8234 | 0.8069 | 0.7884 | 0.8493 | 0.8047 | 0.8147 | 0.9034 | 0.8528 | 0.7145 | 0.8090 |
F1 micro | 0.7192 | 0.7951 | 0.8204 | 0.7642 | 0.8630 | 0.9032 | 0.9156 | 0.9482 | 0.9526 | 0.9606 | 0.8642 |
F1 macro | 0.6021 | 0.7237 | 0.6548 | 0.6274 | 0.7291 | 0.5712 | 0.4780 | 0.8158 | 0.4879 | 0.4900 | 0.6180 |
Citations
@misc{Djacon,
author={Djacon},
year={2023},
publisher={Hugging Face},
journal={Hugging Face Hub},
}
- Downloads last month
- 220
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.