Frozen11-8epoch-BERT-multilingual-finetuned-CEFR_ner-3000news
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6206
- Accuracy: 0.3654
- Precision: 0.5146
- Recall: 0.5208
- F1: 0.4022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 132 | 0.6667 | 0.3546 | 0.5202 | 0.4775 | 0.3676 |
No log | 2.0 | 264 | 0.6564 | 0.3574 | 0.5171 | 0.4956 | 0.3796 |
No log | 3.0 | 396 | 0.6472 | 0.3599 | 0.5112 | 0.4998 | 0.3840 |
0.6062 | 4.0 | 528 | 0.6354 | 0.3622 | 0.5107 | 0.5109 | 0.3927 |
0.6062 | 5.0 | 660 | 0.6282 | 0.3641 | 0.5198 | 0.5115 | 0.3962 |
0.6062 | 6.0 | 792 | 0.6254 | 0.3647 | 0.5192 | 0.5176 | 0.3988 |
0.6062 | 7.0 | 924 | 0.6212 | 0.3653 | 0.5156 | 0.5224 | 0.4040 |
0.5499 | 8.0 | 1056 | 0.6206 | 0.3654 | 0.5146 | 0.5208 | 0.4022 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for DioBot2000/Frozen11-8epoch-BERT-multilingual-finetuned-CEFR_ner-3000news
Base model
google-bert/bert-base-multilingual-cased