sbert_large_nlu_ru_neg

This model is a fine-tuned version of ai-forever/sbert_large_nlu_ru on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7106
  • Precision: 0.5205
  • Recall: 0.57
  • F1: 0.5442
  • Accuracy: 0.8956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0870 50 0.6440 0.0 0.0 0.0 0.7571
No log 2.1739 100 0.5237 0.0317 0.0579 0.0410 0.8069
No log 3.2609 150 0.3775 0.1163 0.1544 0.1327 0.8514
No log 4.3478 200 0.3368 0.2292 0.3031 0.2610 0.8769
No log 5.4348 250 0.3055 0.3066 0.3475 0.3258 0.8929
No log 6.5217 300 0.2919 0.3814 0.5463 0.4492 0.8989
No log 7.6087 350 0.2798 0.4372 0.5039 0.4682 0.9055
No log 8.6957 400 0.2730 0.3934 0.5560 0.4608 0.9071
No log 9.7826 450 0.3021 0.4666 0.5656 0.5113 0.9101
0.3321 10.8696 500 0.3249 0.4664 0.6023 0.5257 0.9110
0.3321 11.9565 550 0.3317 0.5316 0.5849 0.5570 0.9113
0.3321 13.0435 600 0.3352 0.4984 0.5946 0.5423 0.9127
0.3321 14.1304 650 0.3651 0.5079 0.5579 0.5317 0.9157
0.3321 15.2174 700 0.3856 0.4670 0.6004 0.5253 0.9083
0.3321 16.3043 750 0.4087 0.4905 0.5985 0.5391 0.9139
0.3321 17.3913 800 0.4108 0.5058 0.5869 0.5433 0.9113
0.3321 18.4783 850 0.3900 0.5597 0.6429 0.5984 0.9172
0.3321 19.5652 900 0.4572 0.5567 0.6158 0.5848 0.9168
0.3321 20.6522 950 0.4945 0.5952 0.5734 0.5841 0.9121
0.0516 21.7391 1000 0.5660 0.5835 0.5463 0.5643 0.9066
0.0516 22.8261 1050 0.4464 0.5307 0.6178 0.5709 0.9160
0.0516 23.9130 1100 0.5044 0.5696 0.6081 0.5882 0.9130
0.0516 25.0 1150 0.4807 0.5682 0.6274 0.5963 0.9151
0.0516 26.0870 1200 0.5006 0.5615 0.6525 0.6036 0.9157
0.0516 27.1739 1250 0.5228 0.6008 0.5985 0.5996 0.9127
0.0516 28.2609 1300 0.5091 0.5193 0.5965 0.5553 0.9117
0.0516 29.3478 1350 0.5135 0.6036 0.6409 0.6217 0.9177
0.0516 30.4348 1400 0.5183 0.5742 0.6351 0.6031 0.9157
0.0516 31.5217 1450 0.5202 0.5722 0.6506 0.6089 0.9106
0.0256 32.6087 1500 0.5170 0.5836 0.6602 0.6196 0.9174
0.0256 33.6957 1550 0.4348 0.6067 0.6313 0.6187 0.9215
0.0256 34.7826 1600 0.5070 0.6143 0.6120 0.6132 0.9156
0.0256 35.8696 1650 0.5840 0.6525 0.5907 0.6201 0.9121
0.0256 36.9565 1700 0.5587 0.5941 0.6274 0.6103 0.9124
0.0256 38.0435 1750 0.4073 0.5159 0.6564 0.5777 0.9117
0.0256 39.1304 1800 0.4428 0.6180 0.6371 0.6274 0.9166
0.0256 40.2174 1850 0.4775 0.5797 0.6390 0.6079 0.9199
0.0256 41.3043 1900 0.4121 0.5920 0.6274 0.6092 0.9171
0.0256 42.3913 1950 0.4683 0.6136 0.6467 0.6297 0.9179
0.0231 43.4783 2000 0.4961 0.6390 0.5946 0.6160 0.9137
0.0231 44.5652 2050 0.6040 0.6242 0.5483 0.5838 0.9031
0.0231 45.6522 2100 0.5498 0.6458 0.5985 0.6212 0.9121
0.0231 46.7391 2150 0.4636 0.6049 0.6236 0.6141 0.9212
0.0231 47.8261 2200 0.4797 0.634 0.6120 0.6228 0.9142
0.0231 48.9130 2250 0.5335 0.5134 0.6680 0.5805 0.9061
0.0231 50.0 2300 0.5348 0.6167 0.6120 0.6143 0.9075
0.0231 51.0870 2350 0.4871 0.6144 0.6429 0.6283 0.9085
0.0231 52.1739 2400 0.4767 0.5335 0.6757 0.5963 0.9082
0.0231 53.2609 2450 0.4494 0.5895 0.6486 0.6176 0.9109
0.0225 54.3478 2500 0.5282 0.5310 0.6448 0.5824 0.9088
0.0225 55.4348 2550 0.4321 0.5714 0.6332 0.6007 0.9148
0.0225 56.5217 2600 0.4822 0.6179 0.6274 0.6226 0.9105
0.0225 57.6087 2650 0.4360 0.5578 0.6429 0.5973 0.9150
0.0225 58.6957 2700 0.5101 0.6215 0.5927 0.6067 0.9083
0.0225 59.7826 2750 0.4751 0.5327 0.6602 0.5897 0.9069
0.0225 60.8696 2800 0.4942 0.6471 0.5946 0.6197 0.9065
0.0225 61.9565 2850 0.3628 0.4646 0.6332 0.5359 0.8957
0.0225 63.0435 2900 0.4447 0.6152 0.6236 0.6194 0.9098
0.0225 64.1304 2950 0.4965 0.5624 0.6525 0.6041 0.9130
0.0285 65.2174 3000 0.5616 0.5649 0.6216 0.5919 0.9082
0.0285 66.3043 3050 0.7228 0.65 0.5019 0.5664 0.8881

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
426M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DimasikKurd/sbert_large_nlu_ru_neg

Finetuned
(4)
this model