Model Architecture

Evaluation

For a detailed comparison of model performance, check out the Leaderboard for Italian Language Models.

Here's a breakdown of the performance metrics:

Metric hellaswag_it acc_norm arc_it acc_norm m_mmlu_it 5-shot acc Average
Accuracy Normalized 0.6518 0.5441 0.5729 0.5896

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

MODEL_NAME = "DeepMount00/Llama-3-8b-Ita"

model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

def generate_answer(prompt):
    messages = [
        {"role": "user", "content": prompt},
    ]
    model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
    generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
                                          temperature=0.001)
    decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    return decoded[0]

prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)

Developer

[Michele Montebovi]

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 26.58
IFEval (0-Shot) 75.30
BBH (3-Shot) 28.08
MATH Lvl 5 (4-Shot) 5.36
GPQA (0-shot) 7.38
MuSR (0-shot) 11.68
MMLU-PRO (5-shot) 31.69
Downloads last month
115,911
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference API
Input a message to start chatting with DeepMount00/Llama-3-8b-Ita.

Model tree for DeepMount00/Llama-3-8b-Ita

Finetuned
(378)
this model
Adapters
59 models
Merges
43 models
Quantizations
4 models

Spaces using DeepMount00/Llama-3-8b-Ita 7

Collection including DeepMount00/Llama-3-8b-Ita

Evaluation results