DavidCatalano's picture
Updated base model reference to proper model
acfa3a7 verified
metadata
language:
  - en
license: other
library_name: transformers
tags:
  - chat
  - qwen
  - qwen2.5
  - finetune
  - english
base_model:
  - MaziyarPanahi/calme-3.2-instruct-78b
model_name: calme-3.2-instruct-78b
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
  - name: calme-3.2-instruct-78b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.63
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 62.61
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 39.95
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 20.36
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 38.53
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.03
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard

EXL2 4.5bpw Quantization of calme-3.2-instruct-78b

Calme-3 Models

This repository hosts the 4.5 bits per weight (bpw) quantization of the calme-3.2-instruct-78b model, leveraging the ExLlamaV2 format for efficient inference with high-context capabilities. This model is a Qwen 2.5 finetune.

Quantization Details

  • Format: ExLlamaV2 4.5bpw
  • Version: ExLlamaV2 0.2.6
  • Model Size: 78 billion parameters
  • VRAM Usage: Approx. 44GB (32,000 context)
  • Calibration:
    • Rows: 115
    • Length: 2048
    • Dataset: (default)

The quantization process reduces memory usage and inference latency while maintaining high performance for generative text tasks.

Prompt Template

This model uses the ChatML prompt template for interaction:

<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}

Model Usage

Example: Inference with ExLlamaV2

To use this quantized model, ensure you have the ExLlamaV2 library installed:

pip install exllamav2
from exllamav2 import ExLlamaModel, ExLlamaTokenizer, ExLlamaPipeline

# Load model and tokenizer
model = ExLlamaModel.from_pretrained("DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw")
tokenizer = ExLlamaTokenizer.from_pretrained("DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw")

# Create pipeline
pipeline = ExLlamaPipeline(model, tokenizer)

# Generate text
messages = [{"role": "user", "content": "What is EXL2 quantization?"}]
response = pipeline(messages)
print(response)

Features

  • EXL2 format requires Nvidia hardware but runs faster and with less RAM than GGUF.
  • Supports 44GB VRAM with 32,000 context window.
  • 40GB minimum 1024 context window
  • Highly optimized for inference, making it ideal for resource-constrained environments.
  • Compatible with ChatML-based prompting systems.

Acknowledgments

Download Instructions

To download the model files:

huggingface-cli install huggingface_hub
huggingface-cli login
huggingface-cli download DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw --include "*" --local-dir ./local-folder