metadata
language:
- en
license: other
library_name: transformers
tags:
- chat
- qwen
- qwen2.5
- finetune
- english
base_model:
- MaziyarPanahi/calme-3.2-instruct-78b
model_name: calme-3.2-instruct-78b
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-3.2-instruct-78b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.63
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 62.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 39.95
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.36
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 38.53
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.03
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
name: Open LLM Leaderboard
EXL2 4.5bpw Quantization of calme-3.2-instruct-78b
This repository hosts the 4.5 bits per weight (bpw) quantization of the calme-3.2-instruct-78b model, leveraging the ExLlamaV2 format for efficient inference with high-context capabilities. This model is a Qwen 2.5 finetune.
Quantization Details
- Format: ExLlamaV2 4.5bpw
- Version: ExLlamaV2 0.2.6
- Model Size: 78 billion parameters
- VRAM Usage: Approx. 44GB (32,000 context)
- Calibration:
- Rows: 115
- Length: 2048
- Dataset: (default)
The quantization process reduces memory usage and inference latency while maintaining high performance for generative text tasks.
Prompt Template
This model uses the ChatML prompt template for interaction:
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
Model Usage
Example: Inference with ExLlamaV2
To use this quantized model, ensure you have the ExLlamaV2 library installed:
pip install exllamav2
from exllamav2 import ExLlamaModel, ExLlamaTokenizer, ExLlamaPipeline
# Load model and tokenizer
model = ExLlamaModel.from_pretrained("DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw")
tokenizer = ExLlamaTokenizer.from_pretrained("DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw")
# Create pipeline
pipeline = ExLlamaPipeline(model, tokenizer)
# Generate text
messages = [{"role": "user", "content": "What is EXL2 quantization?"}]
response = pipeline(messages)
print(response)
Features
- EXL2 format requires Nvidia hardware but runs faster and with less RAM than GGUF.
- Supports 44GB VRAM with 32,000 context window.
- 40GB minimum 1024 context window
- Highly optimized for inference, making it ideal for resource-constrained environments.
- Compatible with ChatML-based prompting systems.
Acknowledgments
- Original Model Creator: MaziyarPanahi
- Quantization by: DavidCatalano
- Quantization Tool: ExLlamaV2 0.2.6
Download Instructions
To download the model files:
huggingface-cli install huggingface_hub
huggingface-cli login
huggingface-cli download DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw --include "*" --local-dir ./local-folder