image/jpeg

merge

This is a merge of cognitivecomputations/dolphin-2.9.1-llama-3-70b into itsself created using mergekit. Using the same technique as Llama-3-120b.

Merge Details

Merge Method

This model was merged using the passthrough merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
- sources:
  - layer_range: [0, 20]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
- sources:
  - layer_range: [10, 30]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
- sources:
  - layer_range: [20, 40]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
- sources:
  - layer_range: [30, 50]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
- sources:
  - layer_range: [40, 60]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
- sources:
  - layer_range: [50, 70]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
- sources:
  - layer_range: [60, 80]
    model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
merge_method: passthrough
dtype: float16

This model uses ChatML prompt template format.

example:

<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "DarqueDante/LLama-3-Dolphin-2.9.1-120b"
messages = [{"role": "user", "content": "Who is Andrej Karpathy?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

πŸ’» Testing

I have not ran any benchmarking tests on the model yet, though that is my goal for this holiday weekend.

Downloads last month
37
GGUF
Model size
122B params
Architecture
llama

6-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DarqueDante/LLama-3-Mega-Dolphin-2.9.1-120b_GGUF

Quantized
(4)
this model
Quantizations
1 model

Datasets used to train DarqueDante/LLama-3-Mega-Dolphin-2.9.1-120b_GGUF