receipt-core-model

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss
3.0009 1.0 29 1.1423
0.3485 2.0 58 1.1296
0.1717 3.0 87 1.1880
0.1204 4.0 116 1.2580
0.0912 5.0 145 1.2250
0.0801 6.0 174 1.3189
0.0677 7.0 203 1.2968
0.058 8.0 232 1.3284
0.0517 9.0 261 1.3641
0.0441 10.0 290 1.3873
0.0404 11.0 319 1.4239
0.0353 12.0 348 1.4632
0.0324 13.0 377 1.4464
0.0282 14.0 406 1.4695
0.0248 15.0 435 1.4713
0.0234 16.0 464 1.4474
0.0228 17.0 493 1.4191
0.0198 18.0 522 1.4753
0.0203 19.0 551 1.5000
0.0159 20.0 580 1.5167
0.0163 21.0 609 1.4873
0.0177 22.0 638 1.5335
0.0153 23.0 667 1.4642
0.0127 24.0 696 1.4740
0.0118 25.0 725 1.4890
0.0097 26.0 754 1.5592
0.0087 27.0 783 1.5312
0.008 28.0 812 1.5255
0.0083 29.0 841 1.5413
0.0082 30.0 870 1.5408
0.007 31.0 899 1.5491
0.006 32.0 928 1.5660
0.0062 33.0 957 1.5685
0.0053 34.0 986 1.5968
0.0044 35.0 1015 1.5778
0.0046 36.0 1044 1.5743
0.0041 37.0 1073 1.6028
0.0049 38.0 1102 1.5782
0.004 39.0 1131 1.5704
0.004 40.0 1160 1.5804
0.0034 41.0 1189 1.5837
0.0037 42.0 1218 1.5838
0.0037 43.0 1247 1.6018
0.0024 44.0 1276 1.5922
0.0025 45.0 1305 1.5824
0.0036 46.0 1334 1.5884
0.0042 47.0 1363 1.5972
0.0025 48.0 1392 1.5946
0.0023 49.0 1421 1.5923
0.0038 50.0 1450 1.6010
0.0027 51.0 1479 1.5831
0.0053 52.0 1508 1.6958
0.0034 53.0 1537 1.6677
0.003 54.0 1566 1.6849
0.0023 55.0 1595 1.6919
0.0027 56.0 1624 1.6944
0.0023 57.0 1653 1.6739
0.0024 58.0 1682 1.6647
0.0018 59.0 1711 1.6915
0.0016 60.0 1740 1.6705
0.0021 61.0 1769 1.6920
0.002 62.0 1798 1.6965
0.002 63.0 1827 1.6271
0.0017 64.0 1856 1.6795
0.0019 65.0 1885 1.6736
0.0016 66.0 1914 1.7282
0.0025 67.0 1943 1.7446
0.0018 68.0 1972 1.7058
0.0025 69.0 2001 1.6667
0.0022 70.0 2030 1.6680
0.0024 71.0 2059 1.6693
0.0016 72.0 2088 1.6961
0.0026 73.0 2117 1.6914
0.0013 74.0 2146 1.6961
0.0013 75.0 2175 1.6985
0.0008 76.0 2204 1.7127
0.001 77.0 2233 1.7117
0.0016 78.0 2262 1.6930
0.0022 79.0 2291 1.7050
0.001 80.0 2320 1.7253
0.001 81.0 2349 1.7169
0.0016 82.0 2378 1.7116
0.0012 83.0 2407 1.7689
0.0008 84.0 2436 1.8345
0.0012 85.0 2465 1.8240
0.0007 86.0 2494 1.7860
0.0008 87.0 2523 1.7905
0.0007 88.0 2552 1.7736
0.001 89.0 2581 1.7675
0.0029 90.0 2610 1.8951
0.0021 91.0 2639 1.7821
0.0023 92.0 2668 1.8104
0.0018 93.0 2697 1.7326
0.0014 94.0 2726 1.7357
0.0012 95.0 2755 1.7611
0.001 96.0 2784 1.6929
0.0014 97.0 2813 1.7353
0.0011 98.0 2842 1.7296
0.0013 99.0 2871 1.6806
0.0019 100.0 2900 1.7465
0.0012 101.0 2929 1.7528
0.0015 102.0 2958 1.7190

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
43
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for DanSarm/receipt-core-model

Base model

google-t5/t5-base
Finetuned
(451)
this model
Finetunes
2 models