DanJoshua's picture
Subir modelo con todos los parámetros de entrenamiento
383cb85 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: estudiante_MC318_profesor_MViT_kl_RLVS
    results: []

estudiante_MC318_profesor_MViT_kl_RLVS

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0617
  • Accuracy: 0.9829
  • F1: 0.9829
  • Precision: 0.9831
  • Recall: 0.9829
  • Roc Auc: 0.9983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 159
  • training_steps: 1590
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
1.1707 1.0145 79 0.3903 0.9091 0.9091 0.9091 0.9091 0.9760
0.7543 2.0289 158 0.2225 0.9358 0.9358 0.9359 0.9358 0.9882
0.5018 4.0082 237 0.1346 0.9572 0.9572 0.9577 0.9572 0.9928
0.3639 5.0226 316 0.0938 0.9706 0.9706 0.9706 0.9706 0.9945
0.2751 7.0019 395 0.1042 0.9706 0.9706 0.9707 0.9706 0.9963
0.2243 8.0164 474 0.0650 0.9733 0.9733 0.9735 0.9733 0.9971
0.1755 9.0308 553 0.0690 0.9813 0.9813 0.9813 0.9813 0.9980
0.1681 11.0101 632 0.0532 0.9866 0.9866 0.9866 0.9866 0.9978
0.1581 12.0245 711 0.0432 0.9813 0.9813 0.9813 0.9813 0.9991
0.1245 14.0038 790 0.0446 0.9893 0.9893 0.9894 0.9893 0.9986
0.1291 15.0182 869 0.0467 0.9866 0.9866 0.9868 0.9866 0.9992
0.1057 16.0327 948 0.0427 0.9840 0.9840 0.9842 0.9840 0.9990
0.1109 18.0119 1027 0.0403 0.9840 0.9840 0.9842 0.9840 0.9991
0.1039 19.0264 1106 0.0762 0.9679 0.9679 0.9693 0.9679 0.9989
0.0978 21.0057 1185 0.0393 0.9813 0.9813 0.9813 0.9813 0.9991

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3