estudiante_MC318_profesor_MViT_akl_RLVS

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0597
  • Accuracy: 0.9803
  • F1: 0.9803
  • Precision: 0.9803
  • Recall: 0.9803
  • Roc Auc: 0.9979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 159
  • training_steps: 1590
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
22.7945 1.0145 79 0.4204 0.8984 0.8984 0.8985 0.8984 0.9730
14.8284 2.0289 158 0.2329 0.9251 0.9251 0.9259 0.9251 0.9836
10.0047 4.0082 237 0.1401 0.9492 0.9492 0.9492 0.9492 0.9905
7.3642 5.0226 316 0.1023 0.9733 0.9733 0.9733 0.9733 0.9932
5.6128 7.0019 395 0.1193 0.9733 0.9733 0.9733 0.9733 0.9947
4.5908 8.0164 474 0.0743 0.9733 0.9733 0.9735 0.9733 0.9958
3.4695 9.0308 553 0.0811 0.9759 0.9759 0.9760 0.9759 0.9968
3.3759 11.0101 632 0.0575 0.9759 0.9759 0.9761 0.9759 0.9975
3.4995 12.0245 711 0.0492 0.9840 0.9840 0.9840 0.9840 0.9982
2.5838 14.0038 790 0.0470 0.9840 0.9840 0.9840 0.9840 0.9980
2.8276 15.0182 869 0.0544 0.9759 0.9759 0.9761 0.9759 0.9986
2.3636 16.0327 948 0.0441 0.9786 0.9786 0.9791 0.9786 0.9989
2.5376 18.0119 1027 0.0431 0.9840 0.9840 0.9842 0.9840 0.9988
2.3264 19.0264 1106 0.0620 0.9706 0.9706 0.9717 0.9706 0.9989

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
31
Safetensors
Model size
11.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .