estudiante_MC318_profesor_MViT_akl_RLVS
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0597
- Accuracy: 0.9803
- F1: 0.9803
- Precision: 0.9803
- Recall: 0.9803
- Roc Auc: 0.9979
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 159
- training_steps: 1590
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc |
---|---|---|---|---|---|---|---|---|
22.7945 | 1.0145 | 79 | 0.4204 | 0.8984 | 0.8984 | 0.8985 | 0.8984 | 0.9730 |
14.8284 | 2.0289 | 158 | 0.2329 | 0.9251 | 0.9251 | 0.9259 | 0.9251 | 0.9836 |
10.0047 | 4.0082 | 237 | 0.1401 | 0.9492 | 0.9492 | 0.9492 | 0.9492 | 0.9905 |
7.3642 | 5.0226 | 316 | 0.1023 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9932 |
5.6128 | 7.0019 | 395 | 0.1193 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9947 |
4.5908 | 8.0164 | 474 | 0.0743 | 0.9733 | 0.9733 | 0.9735 | 0.9733 | 0.9958 |
3.4695 | 9.0308 | 553 | 0.0811 | 0.9759 | 0.9759 | 0.9760 | 0.9759 | 0.9968 |
3.3759 | 11.0101 | 632 | 0.0575 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9975 |
3.4995 | 12.0245 | 711 | 0.0492 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | 0.9982 |
2.5838 | 14.0038 | 790 | 0.0470 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | 0.9980 |
2.8276 | 15.0182 | 869 | 0.0544 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9986 |
2.3636 | 16.0327 | 948 | 0.0441 | 0.9786 | 0.9786 | 0.9791 | 0.9786 | 0.9989 |
2.5376 | 18.0119 | 1027 | 0.0431 | 0.9840 | 0.9840 | 0.9842 | 0.9840 | 0.9988 |
2.3264 | 19.0264 | 1106 | 0.0620 | 0.9706 | 0.9706 | 0.9717 | 0.9706 | 0.9989 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.0.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 31