estudiante_MC318_RLVS
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0561
- Accuracy: 0.9829
- F1: 0.9829
- Precision: 0.9829
- Recall: 0.9829
- Roc Auc: 0.9981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 159
- training_steps: 1590
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc |
---|---|---|---|---|---|---|---|---|
0.4767 | 1.0145 | 79 | 0.4016 | 0.9011 | 0.9010 | 0.9031 | 0.9011 | 0.9736 |
0.3026 | 2.0289 | 158 | 0.2415 | 0.9465 | 0.9465 | 0.9466 | 0.9465 | 0.9904 |
0.2062 | 4.0082 | 237 | 0.1622 | 0.9626 | 0.9626 | 0.9628 | 0.9626 | 0.9935 |
0.1697 | 5.0226 | 316 | 0.1178 | 0.9679 | 0.9679 | 0.9679 | 0.9679 | 0.9950 |
0.1242 | 7.0019 | 395 | 0.1212 | 0.9759 | 0.9759 | 0.9759 | 0.9759 | 0.9962 |
0.0999 | 8.0164 | 474 | 0.0796 | 0.9706 | 0.9706 | 0.9709 | 0.9706 | 0.9963 |
0.0743 | 9.0308 | 553 | 0.0967 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9975 |
0.0659 | 11.0101 | 632 | 0.0661 | 0.9840 | 0.9840 | 0.9842 | 0.9840 | 0.9975 |
0.0678 | 12.0245 | 711 | 0.0590 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | 0.9987 |
0.0498 | 14.0038 | 790 | 0.0513 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | 0.9982 |
0.0429 | 15.0182 | 869 | 0.0752 | 0.9813 | 0.9813 | 0.9814 | 0.9813 | 0.9983 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.0.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 32