estudiante_MC318_RLVS

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0561
  • Accuracy: 0.9829
  • F1: 0.9829
  • Precision: 0.9829
  • Recall: 0.9829
  • Roc Auc: 0.9981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 159
  • training_steps: 1590
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
0.4767 1.0145 79 0.4016 0.9011 0.9010 0.9031 0.9011 0.9736
0.3026 2.0289 158 0.2415 0.9465 0.9465 0.9466 0.9465 0.9904
0.2062 4.0082 237 0.1622 0.9626 0.9626 0.9628 0.9626 0.9935
0.1697 5.0226 316 0.1178 0.9679 0.9679 0.9679 0.9679 0.9950
0.1242 7.0019 395 0.1212 0.9759 0.9759 0.9759 0.9759 0.9962
0.0999 8.0164 474 0.0796 0.9706 0.9706 0.9709 0.9706 0.9963
0.0743 9.0308 553 0.0967 0.9759 0.9759 0.9761 0.9759 0.9975
0.0659 11.0101 632 0.0661 0.9840 0.9840 0.9842 0.9840 0.9975
0.0678 12.0245 711 0.0590 0.9840 0.9840 0.9840 0.9840 0.9987
0.0498 14.0038 790 0.0513 0.9840 0.9840 0.9840 0.9840 0.9982
0.0429 15.0182 869 0.0752 0.9813 0.9813 0.9814 0.9813 0.9983

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
32
Safetensors
Model size
11.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .