CogitoZ14 / README.md
Daemontatox's picture
Adding Evaluation Results (#1)
bce7276 verified
---
base_model:
- Qwen/Qwen2.5-Coder-14B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- chain-of-thought
- reasoning
license: apache-2.0
language:
- en
datasets:
- PJMixers/Math-Multiturn-100K-ShareGPT
new_version: Daemontatox/CogitoZ14
library_name: transformers
model-index:
- name: CogitoZ14
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 66.37
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ14
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 46.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ14
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 20.77
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ14
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.84
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ14
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.07
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ14
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 33.33
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FCogitoZ14
name: Open LLM Leaderboard
---
![image](./image.webp)
# Uploaded Model
- **Developed by:** Daemontatox
- **License:** apache-2.0
- **Finetuned from model:** [unsloth/qwen2.5-coder-14b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-coder-14b-instruct-bnb-4bit)
## Overview
This Qwen2 model has been finetuned using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL (Transformers Reinforcement Learning) library. The finetuning process achieved a 2x speedup compared to traditional methods.
### Features
- Optimized for text generation and inference tasks.
- Lightweight with 4-bit quantization for efficient performance.
- Compatible with various NLP and code-generation applications.
## Acknowledgments
This model leverages Unsloth’s advanced optimization techniques to ensure faster training and inference.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__CogitoZ14-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FCogitoZ14&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 30.81|
|IFEval (0-Shot) | 66.37|
|BBH (3-Shot) | 46.48|
|MATH Lvl 5 (4-Shot)| 20.77|
|GPQA (0-shot) | 8.84|
|MuSR (0-shot) | 9.07|
|MMLU-PRO (5-shot) | 33.33|