DMetaSoul/sbert-chinese-qmc-finance-v1-distill
此模型是之前开源金融问题匹配模型的蒸馏轻量化版本(仅4层 BERT),适用于金融领域的问题匹配场景,比如:
- 8千日利息400元? VS 10000元日利息多少钱
- 提前还款是按全额计息 VS 还款扣款不成功怎么还款?
- 为什么我借钱交易失败 VS 刚申请的借款为什么会失败
离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 5% 左右(具体结果详见下文评估小节)。
Usage
1. Sentence-Transformers
通过 sentence-transformers 框架来使用该模型,首先进行安装:
pip install -U sentence-transformers
然后使用下面的代码来载入该模型并进行文本表征向量的提取:
from sentence_transformers import SentenceTransformer
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
embeddings = model.encode(sentences)
print(embeddings)
2. HuggingFace Transformers
如果不想使用 sentence-transformers 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation
这里主要跟蒸馏前对应的 teacher 模型作了对比:
性能:
Teacher | Student | Gap | |
---|---|---|---|
Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x |
Cost | 23s | 12s | -47% |
Latency | 38ms | 20ms | -47% |
Throughput | 418 sentence/s | 791 sentence/s | 1.9x |
精度:
csts_dev | csts_test | afqmc | lcqmc | bqcorpus | pawsx | xiaobu | Avg | |
---|---|---|---|---|---|---|---|---|
Teacher | 77.40% | 74.55% | 36.00% | 75.75% | 73.24% | 11.58% | 54.75% | 57.61% |
Student | 75.02% | 71.99% | 32.40% | 67.06% | 66.35% | 7.57% | 49.26% | 52.80% |
Gap (abs.) | - | - | - | - | - | - | - | -4.81% |
基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256
Citing & Authors
E-mail: [email protected]
- Downloads last month
- 70
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.