EDIT:

Always check my space for the latest benchmark results for my models!

OmniTrixAI

OmniTrixAI is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: senseable/WestLake-7B-v2
    # No parameters necessary for base model
  - model: mlabonne/NeuralBeagle14-7B
    parameters:
      density: 0.65
      weight: 0.40
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: 0.45
      weight: 0.26
  - model: CultriX/MergeTrix-7B-v2
    parameters:
      density: 0.55
      weight: 0.34
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "CultriX/OmniTrixAI"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
76
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CultriX/OmniTrixAI