ZipNeRF
An unofficial pytorch implementation of "Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields" https://arxiv.org/abs/2304.06706. This work is based on multinerf, so features in refnerf,rawnerf,mipnerf360 are also available.
Credit
Initial Code from SuLvXiangXin
Results
New results(5.27):
360_v2:
https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/2b276e48-2dc4-4508-8441-e90ec963f7d9
360_v2_glo:(fewer floaters, but worse metric)
https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/bddb5610-2a4f-4981-8e17-71326a24d291
mesh results(5.27):
Mipnerf360(PSNR):
bicycle | garden | stump | room | counter | kitchen | bonsai | |
---|---|---|---|---|---|---|---|
Paper | 25.80 | 28.20 | 27.55 | 32.65 | 29.38 | 32.50 | 34.46 |
This repo | 25.44 | 27.98 | 26.75 | 32.13 | 29.10 | 32.63 | 34.20 |
Blender(PSNR):
chair | drums | ficus | hotdog | lego | materials | mic | ship | |
---|---|---|---|---|---|---|---|---|
Paper | 34.84 | 25.84 | 33.90 | 37.14 | 34.84 | 31.66 | 35.15 | 31.38 |
This repo | 35.26 | 25.51 | 32.66 | 36.56 | 35.04 | 29.43 | 34.93 | 31.38 |
For Mipnerf360 dataset, the model is trained with a downsample factor of 4 for outdoor scene and 2 for indoor scene(same as in paper). Training speed is about 1.5x slower than paper(1.5 hours on 8 A6000).
The hash decay loss seems to have little effect(?), as many floaters can be found in the final results in both experiments (especially in Blender).
Install
# Clone the repo.
git clone https://github.com/SuLvXiangXin/zipnerf-pytorch.git
cd zipnerf-pytorch
# Make a conda environment.
conda create --name zipnerf python=3.9
conda activate zipnerf
# Install requirements.
pip install -r requirements.txt
# Install other extensions
pip install ./gridencoder
# Install nvdiffrast (optional, for textured mesh)
git clone https://github.com/NVlabs/nvdiffrast
pip install ./nvdiffrast
# Install a specific cuda version of torch_scatter
# see more detail at https://github.com/rusty1s/pytorch_scatter
CUDA=cu117
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
Dataset
mkdir data
cd data
# e.g. mipnerf360 data
wget http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
unzip 360_v2.zip
Train
# Configure your training (DDP? fp16? ...)
# see https://huggingface.co/docs/accelerate/index for details
accelerate config
# Where your data is
DATA_DIR=data/360_v2/bicycle
EXP_NAME=360_v2/bicycle
# Experiment will be conducted under "exp/${EXP_NAME}" folder
# "--gin_configs=configs/360.gin" can be seen as a default config
# and you can add specific config useing --gin_bindings="..."
accelerate launch train.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# or you can also run without accelerate (without DDP)
CUDA_VISIBLE_DEVICES=0 python train.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example training script
bash scripts/train_360.sh
# blender dataset
bash scripts/train_blender.sh
# metric, render image, etc can be viewed through tensorboard
tensorboard --logdir "exp/${EXP_NAME}"
Render
Rendering results can be found in the directory exp/${EXP_NAME}/render
accelerate launch render.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.render_path = True" \
--gin_bindings="Config.render_path_frames = 480" \
--gin_bindings="Config.render_video_fps = 60" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example rendering script
bash scripts/render_360.sh
Evaluate
Evaluating results can be found in the directory exp/${EXP_NAME}/test_preds
# using the same exp_name as in training
accelerate launch eval.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example evaluating script
bash scripts/eval_360.sh
Extract mesh
Mesh results can be found in the directory exp/${EXP_NAME}/mesh
# more configuration can be found in internal/configs.py
accelerate launch extract.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# --gin_bindings="Config.mesh_radius = 1" # (optional) smaller for more details e.g. 0.2 in bicycle scene
# --gin_bindings="Config.isosurface_threshold = 20" # (optional) empirical value
# --gin_bindings="Config.mesh_voxels=134217728" # (optional) number of voxels used to extract mesh, e.g. 134217728 equals to 512**3 . Smaller values may solve OutoFMemoryError
# --gin_bindings="Config.vertex_color = True" # (optional) saving mesh with vertex color instead of atlas which is much slower but with more details.
# --gin_bindings="Config.vertex_projection = True" # (optional) use projection for vertex color
# or extracting mesh using tsdf method
accelerate launch extract.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example script
bash scripts/extract_360.sh
OutOfMemory
you can decrease the total batch size by
adding e.g. --gin_bindings="Config.batch_size = 8192"
,
or decrease the test chunk size by adding e.g. --gin_bindings="Config.render_chunk_size = 8192"
,
or use more GPU by configure accelerate config
.
Preparing custom data
More details can be found at https://github.com/google-research/multinerf
DATA_DIR=my_dataset_dir
bash scripts/local_colmap_and_resize.sh ${DATA_DIR}
TODO
- Add MultiScale training and testing
Citation
@misc{barron2023zipnerf,
title={Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields},
author={Jonathan T. Barron and Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman},
year={2023},
eprint={2304.06706},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{multinerf2022,
title={{MultiNeRF}: {A} {Code} {Release} for {Mip-NeRF} 360, {Ref-NeRF}, and {RawNeRF}},
author={Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman and Ricardo Martin-Brualla and Jonathan T. Barron},
year={2022},
url={https://github.com/google-research/multinerf},
}
@Misc{accelerate,
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
author = {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
howpublished = {\url{https://github.com/huggingface/accelerate}},
year = {2022}
}
@misc{torch-ngp,
Author = {Jiaxiang Tang},
Year = {2022},
Note = {https://github.com/ashawkey/torch-ngp},
Title = {Torch-ngp: a PyTorch implementation of instant-ngp}
}
Acknowledgements
This work is based on my another repo https://github.com/SuLvXiangXin/multinerf-pytorch, which is basically a pytorch translation from multinerf
- Thanks to multinerf for amazing multinerf(MipNeRF360,RefNeRF,RawNeRF) implementation
- Thanks to accelerate for distributed training
- Thanks to torch-ngp for super useful hashencoder
- Thanks to Yurui Chen for discussing the details of the paper.