BitDiffusionXL-v0.1 / README.md
echoctx's picture
Update README.md
e7686dc verified
metadata
pipeline_tag: text-to-image
widget:
  - text: Three cow grazing in a bay window
    output:
      url: cow.png
  - text: >-
      Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass
      flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive
      green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe,
      dirty, noisy, Vintage monk style, very detailed, hd
    output:
      url: girl.png
  - text: >-
      spacious,circular underground room,{dirtied and bloodied white
      tiles},amalgamation,flesh,plastic,dark fabric,core,pulsating
      heart,limbs,human-like arms,twisted angelic wings,arms,covered in
      skin,feathers,scales,undulate slowly,unseen current,convulsing,head
      area,chaotic,mass of eyes,mouths,no human features,smaller
      forms,cherubs,demons,golden wires,surround,holy light,tv static
      effect,golden glow,shadows,terrifying essence,overwhelming
      presence,nightmarish,landscape,sparse,cavernous,eerie,dynamic,motion,striking,awe-inspiring,nightmarish,nightmarish,nightmare,horrifying,bio-mechanical,body
      horror,amalgamation
    output:
      url: aigle.png
license: gpl-3.0
datasets:
  - CortexLM/midjourney-v6
library_name: diffusers
language:
  - en
tags:
  - bittensor
  - decentralization
  - vision
  - subnet 19
  - pixel
drawing
Prompt
Three cow grazing in a bay window
Prompt
Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe, dirty, noisy, Vintage monk style, very detailed, hd
Prompt
spacious,circular underground room,{dirtied and bloodied white tiles},amalgamation,flesh,plastic,dark fabric,core,pulsating heart,limbs,human-like arms,twisted angelic wings,arms,covered in skin,feathers,scales,undulate slowly,unseen current,convulsing,head area,chaotic,mass of eyes,mouths,no human features,smaller forms,cherubs,demons,golden wires,surround,holy light,tv static effect,golden glow,shadows,terrifying essence,overwhelming presence,nightmarish,landscape,sparse,cavernous,eerie,dynamic,motion,striking,awe-inspiring,nightmarish,nightmarish,nightmare,horrifying,bio-mechanical,body horror,amalgamation

(From PlixAI BitDiffusion model)

BitDiffusionXL v0.1

This is the initial version of the image model trained on the Bittensor network within Pixel subnet. It's not expected for this model to perform as well as MidJourney V6 at the moment. However, it does generate better images than base SDXL model.

Trained on the dataset of Subnet 19 Vision.

Pixel subnet Checkpoint

Model ID : gtsru/sn17-dek-012

Revision : 5852d39e8413a377a3477b8278ade9af311f83a4

UID : 42

Perplexity : 1.1325

Settings for BitDiffusionXL v0.1

Use these settings for the best results with BitDiffusionV0.1:

CFG Scale: Use a CFG scale of 8

Steps: 40 to 60 steps

Sampler: DPM++ 2M SDE

Scheduler: Karras

Resolution: 1024x1024

For best results, set a negative_prompt

Use it with 🧨 diffusers

import torch
from diffusers import (
    StableDiffusionXLPipeline, 
    KDPM2AncestralDiscreteScheduler,
    AutoencoderKL
)

# Load VAE component
vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", 
    torch_dtype=torch.float16
)

# Configure the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "CortexLM/BitDiffusionXL-v0.1", 
    vae=vae,
    torch_dtype=torch.float16
)
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')

# Define prompts and generate image
prompt = "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed"
negative_prompt = "nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image"

image = pipe(
    prompt, 
    negative_prompt=negative_prompt, 
    width=1024,
    height=1024,
    guidance_scale=7.5,
    num_inference_steps=50
).images[0]

Training Subnet : https://github.com/PlixML/pixel

Dataset : https://huggingface.co/datasets/CortexLM/midjourney-v6