metadata
license: llama3.1
datasets:
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
model-index:
- name: Control-LLM-Llama3.1-8B-OpenCoder8
results:
- task:
type: code-evaluation
dataset:
type: mixed
name: Code Evaluation Dataset
metrics:
- name: pass_at_1,n=1 (code_instruct)
type: pass_at_1
value: 0.770508826583593
stderr: 0.013547264970313243
verified: false
- name: pass_at_1,n=1 (humaneval_greedy_instruct)
type: pass_at_1
value: 0.823170731707317
stderr: 0.029883277857485988
verified: false
- name: pass_at_1,n=1 (humaneval_plus_greedy_instruct)
type: pass_at_1
value: 0.7621951219512195
stderr: 0.033346454086653404
verified: false
- name: pass_at_1,n=1 (mbpp_plus_0shot_instruct)
type: pass_at_1
value: 0.7751322751322751
stderr: 0.02150209607822914
verified: false
- name: pass_at_1,n=1 (mbpp_sanitized_0shot_instruct)
type: pass_at_1
value: 0.7354085603112841
stderr: 0.027569713464529938
verified: false
- task:
type: original-capability
dataset:
type: meta/Llama-3.1-8B-Instruct-evals
name: Llama-3.1-8B-Instruct-evals Dataset
dataset_path: meta-llama/llama-3.1-8_b-instruct-evals
dataset_name: Llama-3.1-8B-Instruct-evals__arc_challenge__details
metrics:
- name: exact_match,strict-match (original_capability_instruct)
type: exact_match
value: 0.5599378769819771
stderr: 0.0028491774433443513
verified: false
- name: exact_match,strict-match (meta_arc_0shot_instruct)
type: exact_match
value: 0.8094420600858369
stderr: 0.011511446994122106
verified: false
- name: exact_match,strict-match (meta_gpqa_0shot_cot_instruct)
type: exact_match
value: 0.32589285714285715
stderr: 0.02216910313464341
verified: false
- name: exact_match,strict-match (meta_mmlu_0shot_instruct)
type: exact_match
value: 0.681241988320752
stderr: 0.003932622311434926
verified: false
- name: exact_match,strict-match (meta_mmlu_pro_5shot_instruct)
type: exact_match
value: 0.4029255319148936
stderr: 0.004471732136513382
verified: false
pipeline_tag: text-generation
library_name: transformers
Control-LLM-Llama3.1-8B-OpenCoder8
This is a fine-tuned model of Llama-3.1-8B-Instruct for coding tasks on OpenCoder SFT dataset described in the paper: Control LLM: Controlled Evolution for Intelligence Retention in LLM.
Code: https://github.com/linkedin/ControlLLM.
Linked Open Source code - training, eval and benchmark
This model is associated with the github: Control-LLM.
Evaluation Results
Here is an overview of the evaluation results and findings:
Hybrid Expansion on OpenCoder
The following diagram illustrates how hybrid expansion works.
Benchmark Results Table
The table below summarizes evaluation results across coding tasks and original capabilities.
Model | MB+ | MS | HE+ | HE | C-Avg | ARC | GP | MLU | MLUP | O-Avg | Overall |
---|---|---|---|---|---|---|---|---|---|---|---|
Llama3.1-8B-Ins | 70.4 | 67.7 | 66.5 | 70.7 | 69.1 | 83.4 | 29.9 | 72.4 | 46.7 | 60.5 | 64.8 |
OpenCoder-8B-Ins | 81.2 | 76.3 | 78.0 | 82.3 | 79.5 | 8.2 | 25.4 | 37.4 | 11.3 | 24.6 | 52.1 |
Full Param Tune | 75.1 | 69.6 | 71.3 | 76.8 | 73.3 | 24.4 | 21.9 | 43.0 | 19.2 | 31.5 | 52.4 |
Partial Param Tune | 75.7 | 71.6 | 74.4 | 79.3 | 75.0 | 70.2 | 28.1 | 60.7 | 32.4 | 48.3 | 61.7 |
Stack Expansion | 77.2 | 72.8 | 73.2 | 78.7 | 75.6 | 80.0 | 26.3 | 66.6 | 38.2 | 54.2 | 64.9 |
ControlLLM-Hybrid | 77.5 | 73.5 | 76.2 | 82.3 | 77.1 | 80.9 | 32.6 | 68.1 | 40.3 | 56.0 | 66.6 |
Explanation:
- MB+: MBPP Plus
- MS: MBPP Sanitized
- HE+: HumanEval Plus
- HE: HumanEval
- C-Avg: Coding - Size Weighted Average across MB+, MS, HE+, and HE
- ARC: ARC benchmark
- GP: GPQA benchmark
- MLU: MMLU (Massive Multitask Language Understanding)
- MLUP: MMLU Pro
- O-Avg: Original Capability - Size Weighted Average across ARC, GPQA, MMLU, and MMLU Pro
- Overall: Combined average across all tasks