Model Card

Overview

This model, trained on Vibravox body conduction sensor data, maps clean speech to body-conducted speech.

Inference script :

import torch, torchaudio
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
from datasets import load_dataset

model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_reverse_temple_vibration_pickup")
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)

audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.headset_microphone"]["array"])
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)

cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
degraded_audio_16kHz, _ = model(cut_audio_16kHz)
Downloads last month
3
Safetensors
Model size
1.95M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Dataset used to train Cnam-LMSSC/EBEN_reverse_temple_vibration_pickup

Collection including Cnam-LMSSC/EBEN_reverse_temple_vibration_pickup

Evaluation results

  • Test STOI, in-domain training on Vibravox["headset_microphone"] to Vibravox["temple_vibration_pickup"]
    self-reported
    0.435