French Librispeech "Vibravoxed"
Collection
simulated data
•
6 items
•
Updated
speech_clean
subset of Cnam-LMSSC/vibravoxThis model, trained on Vibravox body conduction sensor data, maps clean speech to body-conducted speech.
import torch, torchaudio
from vibravox.torch_modules.dnn.eben_generator import EBENGenerator
from datasets import load_dataset
model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_reverse_temple_vibration_pickup")
test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True)
audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.headset_microphone"]["array"])
audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000)
cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz[None, None, :])
degraded_audio_16kHz, _ = model(cut_audio_16kHz)