How to use

You can use this model directly with a pipeline for text classification:

from transformers import pipeline
pipe = pipeline(model="ChouBERT/CamemBERT-plant-health-tweet-classifier")
pipe("Voila les limaces de retour. Ça faisait longtemps que j’en avais pas vu sur blé.")

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("ChouBERT/CamemBERT-plant-health-tweet-classifier")
model = AutoModelForSequenceClassification.from_pretrained("ChouBERT/CamemBERT-plant-health-tweet-classifier")
text = "Il y a 7 jours le blé ne pointait pas encore. Aujourd’hui 1,5 feuille et dégat de limace. Intervention a venir."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
Downloads last month
6
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.