NitroFusion

NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training

Dar-Yen Chen, Hmrishav Bandyopadhyay, Kai Zou, Yi-Zhe Song

[arXiv Paper] [Project Page]

News

  • 04 Dec 2024: Paper is released on arXiv, and the project page is now public.
  • 30 Nov 2024: Our single-step text-to-image demo is publicly available on πŸ€— Hugging Face Space.
  • 29 Nov 2024: Released two checkpoints: NitroSD-Realism and NitroSD-Vibrant.

Online Demos

NitroFusion single-step Text-to-Image demo hosted on πŸ€— Hugging Face Space

Model Overview

  • nitrosd-realism_unet.safetensors: Produces photorealistic images with fine details.
  • nitrosd-vibrant_unet.safetensors: Offers vibrant, saturated color characteristics.
  • Both models support 1 to 4 inference steps.

Usage

First, we need to implement the scheduler with timestep shift for multi-step inference:

from diffusers import LCMScheduler
class TimestepShiftLCMScheduler(LCMScheduler):
    def __init__(self, *args, shifted_timestep=250, **kwargs):
        super().__init__(*args, **kwargs)
        self.register_to_config(shifted_timestep=shifted_timestep)
    def set_timesteps(self, *args, **kwargs):
        super().set_timesteps(*args, **kwargs)
        self.origin_timesteps = self.timesteps.clone()
        self.shifted_timesteps = (self.timesteps * self.config.shifted_timestep / self.config.num_train_timesteps).long()
        self.timesteps = self.shifted_timesteps
    def step(self, model_output, timestep, sample, generator=None, return_dict=True):
        if self.step_index is None:
            self._init_step_index(timestep)
        self.timesteps = self.origin_timesteps
        output = super().step(model_output, timestep, sample, generator, return_dict)
        self.timesteps = self.shifted_timesteps
        return output

We can then utilize the diffuser pipeline:

import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Load model.
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ChenDY/NitroFusion"
# NitroSD-Realism
ckpt = "nitrosd-realism_unet.safetensors"
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
scheduler = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=250)
scheduler.config.original_inference_steps = 4
# # NitroSD-Vibrant
# ckpt = "nitrosd-vibrant_unet.safetensors"
# unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
# scheduler = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=500)
# scheduler.config.original_inference_steps = 4
pipe = DiffusionPipeline.from_pretrained(
    base_model_id,
    unet=unet,
    scheduler=scheduler,
    torch_dtype=torch.float16,
    variant="fp16",
).to("cuda")
prompt = "a photo of a cat"
image = pipe(
    prompt=prompt,
    num_inference_steps=1,  # NotroSD-Realism and -Vibrant both support 1 - 4 inference steps.
    guidance_scale=0,
).images[0]

License

NitroSD-Realism is released under cc-by-nc-4.0, following its base model DMD2.

NitroSD-Vibrant is released under openrail++.

Downloads last month
3,394
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ChenDY/NitroFusion

Finetuned
(1)
this model

Spaces using ChenDY/NitroFusion 8