CheeLi03's picture
Upload tokenizer
4031159 verified
|
raw
history blame
2.14 kB
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - nl
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Dutch Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: nl_nl
          split: None
          args: 'config: nl split: test'
        metrics:
          - type: wer
            value: 193.08638996138995
            name: Wer

Whisper Tiny Dutch Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0318
  • Wer: 193.0864

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2297 5.1546 1000 0.8384 125.7963
0.0387 10.3093 2000 0.9217 167.4590
0.0112 15.4639 3000 1.0067 201.5565
0.0081 20.6186 4000 1.0318 193.0864

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3