llama_3_gsm8k_gold_answer

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
3.0165 0.7692 5 2.0109
1.7821 1.5385 10 1.7963
1.6447 2.3077 15 1.6973
1.3804 3.0769 20 1.6807
1.2411 3.8462 25 1.7176
1.22 4.6154 30 1.7227

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
13
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for CharlesLi/llama_3_gsm8k_gold_answer

Adapter
(531)
this model