CERE V2 -LLMA-3.1-8b-TR
This model is an fine-tuned version of a Llama3.1 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner.
Model Details
- Base Model: LLMA 3.1 8B based LLM
- Tokenizer Extension: Specifically extended for Turkish
- Training Dataset: Cleaned Turkish raw data with 5 billion tokens, custom Turkish instruction sets
- Training Method: Initially with DORA, followed by fine-tuning with LORA
Benchmark Results
- Winogrande_tr: 56.16
- TruthfulQA_tr_v0.2: 47.46
- Mmlu_tr_v0.2: 46.46
- HellaSwag_tr_v0.2: 48.87
- GSM8k_tr_v0.2: 25.43
- Arc_tr_v0.2: 41.97
Usage Examples
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Cerebrum/cere-llama-3.1-8B-tr",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Cerebrum/cere-llama-3.1-8B-tr")
prompt = "Python'da ekrana 'Merhaba Dünya' nasıl yazılır?"
messages = [
{"role": "system", "content": "Sen, Cerebrum Tech tarafından üretilen ve verilen talimatları takip ederek en iyi cevabı üretmeye çalışan yardımcı bir yapay zekasın."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
temperature=0.3,
top_k=50,
top_p=0.9,
max_new_tokens=512,
repetition_penalty=1,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for CerebrumTech/cere-llama-3.1-8B-tr
Base model
meta-llama/Llama-3.1-8B