|
import os |
|
import json |
|
import torch |
|
import random |
|
|
|
|
|
project_root = 'project_root' |
|
model_dir = os.path.join(project_root, 'model') |
|
tokenizer_dir = os.path.join(model_dir, 'tokenizer') |
|
scripts_dir = os.path.join(project_root, 'scripts') |
|
|
|
|
|
os.makedirs(tokenizer_dir, exist_ok=True) |
|
os.makedirs(scripts_dir, exist_ok=True) |
|
|
|
|
|
config = { |
|
"model_type": "my_model_type", |
|
"input_size": 100, |
|
"hidden_size": 64, |
|
"output_size": 10, |
|
"num_layers": 1, |
|
"dropout": 0.2 |
|
} |
|
|
|
with open(os.path.join(model_dir, 'config.json'), 'w') as f: |
|
json.dump(config, f) |
|
|
|
|
|
class SampleModel(torch.nn.Module): |
|
def __init__(self): |
|
super(SampleModel, self).__init__() |
|
self.linear = torch.nn.Linear(100, 10) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
|
|
model = SampleModel() |
|
torch.save(model.state_dict(), os.path.join(model_dir, 'pytorch_model.bin')) |
|
|
|
|
|
vocab = ['hello', 'world', 'my', 'model', 'tokenization', 'is', 'important'] |
|
vocab_file_path = os.path.join(tokenizer_dir, 'vocab.txt') |
|
with open(vocab_file_path, 'w') as f: |
|
for token in vocab: |
|
f.write(f"{token}\n") |
|
|
|
|
|
tokenizer_config = { |
|
"vocab_size": len(vocab), |
|
"do_lower_case": True, |
|
"tokenizer_type": "MyTokenizer" |
|
} |
|
with open(os.path.join(tokenizer_dir, 'tokenizer.json'), 'w') as f: |
|
json.dump(tokenizer_config, f) |
|
|
|
|
|
train_script = """import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
|
|
class SampleModel(nn.Module): |
|
def __init__(self): |
|
super(SampleModel, self).__init__() |
|
self.linear = nn.Linear(100, 10) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
def train(): |
|
model = SampleModel() |
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
|
|
# Sample data |
|
inputs = torch.randn(100, 100) # 100 samples |
|
targets = torch.randint(0, 10, (100,)) # 100 random labels |
|
|
|
# Training loop (simplified) |
|
for epoch in range(5): # 5 epochs |
|
optimizer.zero_grad() |
|
outputs = model(inputs) |
|
loss = criterion(outputs, targets) |
|
loss.backward() |
|
optimizer.step() |
|
print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}") |
|
|
|
if __name__ == "__main__": |
|
train() |
|
""" |
|
|
|
with open(os.path.join(scripts_dir, 'train.py'), 'w') as f: |
|
f.write(train_script) |
|
|
|
|
|
inference_script = """import torch |
|
import torch.nn as nn |
|
|
|
class SampleModel(nn.Module): |
|
def __init__(self): |
|
super(SampleModel, self).__init__() |
|
self.linear = nn.Linear(100, 10) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
def inference(input_data): |
|
model = SampleModel() |
|
model.load_state_dict(torch.load('model/pytorch_model.bin')) |
|
model.eval() |
|
with torch.no_grad(): |
|
output = model(input_data) |
|
return output |
|
|
|
if __name__ == "__main__": |
|
# Sample inference |
|
input_data = torch.randn(1, 100) # Single sample |
|
output = inference(input_data) |
|
print(output) |
|
""" |
|
|
|
with open(os.path.join(scripts_dir, 'inference.py'), 'w') as f: |
|
f.write(inference_script) |
|
|
|
|
|
utils_script = """def load_model(model_path): |
|
import torch |
|
model = SampleModel() |
|
model.load_state_dict(torch.load(model_path)) |
|
model.eval() |
|
return model |
|
|
|
def preprocess_input(input_data): |
|
# Add input preprocessing logic here |
|
return input_data |
|
""" |
|
|
|
with open(os.path.join(scripts_dir, 'utils.py'), 'w') as f: |
|
f.write(utils_script) |
|
|
|
print("Project structure created successfully!") |
|
|