Canstralian
commited on
Create setup_project.py
Browse files- setup_project.py +142 -0
setup_project.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
|
6 |
+
# Define the directory structure
|
7 |
+
project_root = 'project_root'
|
8 |
+
model_dir = os.path.join(project_root, 'model')
|
9 |
+
tokenizer_dir = os.path.join(model_dir, 'tokenizer')
|
10 |
+
scripts_dir = os.path.join(project_root, 'scripts')
|
11 |
+
|
12 |
+
# Create directories
|
13 |
+
os.makedirs(tokenizer_dir, exist_ok=True)
|
14 |
+
os.makedirs(scripts_dir, exist_ok=True)
|
15 |
+
|
16 |
+
# Step 2: Create config.json
|
17 |
+
config = {
|
18 |
+
"model_type": "my_model_type",
|
19 |
+
"input_size": 100,
|
20 |
+
"hidden_size": 64,
|
21 |
+
"output_size": 10,
|
22 |
+
"num_layers": 1,
|
23 |
+
"dropout": 0.2
|
24 |
+
}
|
25 |
+
|
26 |
+
with open(os.path.join(model_dir, 'config.json'), 'w') as f:
|
27 |
+
json.dump(config, f)
|
28 |
+
|
29 |
+
# Step 3: Create a sample pytorch_model.bin
|
30 |
+
class SampleModel(torch.nn.Module):
|
31 |
+
def __init__(self):
|
32 |
+
super(SampleModel, self).__init__()
|
33 |
+
self.linear = torch.nn.Linear(100, 10)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
return self.linear(x)
|
37 |
+
|
38 |
+
# Initialize and save the model weights
|
39 |
+
model = SampleModel()
|
40 |
+
torch.save(model.state_dict(), os.path.join(model_dir, 'pytorch_model.bin'))
|
41 |
+
|
42 |
+
# Step 4: Create vocab.txt for tokenizer
|
43 |
+
vocab = ['hello', 'world', 'my', 'model', 'tokenization', 'is', 'important']
|
44 |
+
vocab_file_path = os.path.join(tokenizer_dir, 'vocab.txt')
|
45 |
+
with open(vocab_file_path, 'w') as f:
|
46 |
+
for token in vocab:
|
47 |
+
f.write(f"{token}\n")
|
48 |
+
|
49 |
+
# Step 5: Create tokenizer.json
|
50 |
+
tokenizer_config = {
|
51 |
+
"vocab_size": len(vocab),
|
52 |
+
"do_lower_case": True,
|
53 |
+
"tokenizer_type": "MyTokenizer"
|
54 |
+
}
|
55 |
+
with open(os.path.join(tokenizer_dir, 'tokenizer.json'), 'w') as f:
|
56 |
+
json.dump(tokenizer_config, f)
|
57 |
+
|
58 |
+
# Step 6: Create train.py
|
59 |
+
train_script = """import torch
|
60 |
+
import torch.nn as nn
|
61 |
+
import torch.optim as optim
|
62 |
+
|
63 |
+
class SampleModel(nn.Module):
|
64 |
+
def __init__(self):
|
65 |
+
super(SampleModel, self).__init__()
|
66 |
+
self.linear = nn.Linear(100, 10)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
return self.linear(x)
|
70 |
+
|
71 |
+
def train():
|
72 |
+
model = SampleModel()
|
73 |
+
criterion = nn.CrossEntropyLoss()
|
74 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
75 |
+
|
76 |
+
# Sample data
|
77 |
+
inputs = torch.randn(100, 100) # 100 samples
|
78 |
+
targets = torch.randint(0, 10, (100,)) # 100 random labels
|
79 |
+
|
80 |
+
# Training loop (simplified)
|
81 |
+
for epoch in range(5): # 5 epochs
|
82 |
+
optimizer.zero_grad()
|
83 |
+
outputs = model(inputs)
|
84 |
+
loss = criterion(outputs, targets)
|
85 |
+
loss.backward()
|
86 |
+
optimizer.step()
|
87 |
+
print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
train()
|
91 |
+
"""
|
92 |
+
|
93 |
+
with open(os.path.join(scripts_dir, 'train.py'), 'w') as f:
|
94 |
+
f.write(train_script)
|
95 |
+
|
96 |
+
# Step 7: Create inference.py
|
97 |
+
inference_script = """import torch
|
98 |
+
import torch.nn as nn
|
99 |
+
|
100 |
+
class SampleModel(nn.Module):
|
101 |
+
def __init__(self):
|
102 |
+
super(SampleModel, self).__init__()
|
103 |
+
self.linear = nn.Linear(100, 10)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
return self.linear(x)
|
107 |
+
|
108 |
+
def inference(input_data):
|
109 |
+
model = SampleModel()
|
110 |
+
model.load_state_dict(torch.load('model/pytorch_model.bin'))
|
111 |
+
model.eval()
|
112 |
+
with torch.no_grad():
|
113 |
+
output = model(input_data)
|
114 |
+
return output
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
# Sample inference
|
118 |
+
input_data = torch.randn(1, 100) # Single sample
|
119 |
+
output = inference(input_data)
|
120 |
+
print(output)
|
121 |
+
"""
|
122 |
+
|
123 |
+
with open(os.path.join(scripts_dir, 'inference.py'), 'w') as f:
|
124 |
+
f.write(inference_script)
|
125 |
+
|
126 |
+
# Step 8: Create utils.py
|
127 |
+
utils_script = """def load_model(model_path):
|
128 |
+
import torch
|
129 |
+
model = SampleModel()
|
130 |
+
model.load_state_dict(torch.load(model_path))
|
131 |
+
model.eval()
|
132 |
+
return model
|
133 |
+
|
134 |
+
def preprocess_input(input_data):
|
135 |
+
# Add input preprocessing logic here
|
136 |
+
return input_data
|
137 |
+
"""
|
138 |
+
|
139 |
+
with open(os.path.join(scripts_dir, 'utils.py'), 'w') as f:
|
140 |
+
f.write(utils_script)
|
141 |
+
|
142 |
+
print("Project structure created successfully!")
|