|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
|
|
def load_data(file_path): |
|
""" |
|
Load dataset from a CSV file. |
|
|
|
Args: |
|
file_path (str): Path to the CSV file. |
|
|
|
Returns: |
|
pd.DataFrame: Loaded dataset. |
|
""" |
|
return pd.read_csv(file_path) |
|
|
|
def preprocess_data(df): |
|
""" |
|
Preprocess the dataset by handling missing values and encoding categorical variables. |
|
|
|
Args: |
|
df (pd.DataFrame): Raw dataset. |
|
|
|
Returns: |
|
pd.DataFrame: Preprocessed dataset. |
|
""" |
|
|
|
df = df.dropna() |
|
|
|
|
|
df = pd.get_dummies(df) |
|
|
|
return df |
|
|
|
def split_data(df, target_column, test_size=0.2): |
|
""" |
|
Split the dataset into training and testing sets. |
|
|
|
Args: |
|
df (pd.DataFrame): Preprocessed dataset. |
|
target_column (str): Name of the target column. |
|
test_size (float): Proportion of the dataset to include in the test split. |
|
|
|
Returns: |
|
X_train, X_test, y_train, y_test: Split datasets. |
|
""" |
|
X = df.drop(columns=[target_column]) |
|
y = df[target_column] |
|
return train_test_split(X, y, test_size=test_size, random_state=42) |
|
|