Canstralian
commited on
Create data_preprocessing/preprocessing.py
Browse files
data_preprocessing/preprocessing.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
|
4 |
+
def load_data(file_path):
|
5 |
+
"""
|
6 |
+
Load dataset from a CSV file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
file_path (str): Path to the CSV file.
|
10 |
+
|
11 |
+
Returns:
|
12 |
+
pd.DataFrame: Loaded dataset.
|
13 |
+
"""
|
14 |
+
return pd.read_csv(file_path)
|
15 |
+
|
16 |
+
def preprocess_data(df):
|
17 |
+
"""
|
18 |
+
Preprocess the dataset by handling missing values and encoding categorical variables.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
df (pd.DataFrame): Raw dataset.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
pd.DataFrame: Preprocessed dataset.
|
25 |
+
"""
|
26 |
+
# Handle missing values
|
27 |
+
df = df.dropna()
|
28 |
+
|
29 |
+
# Encode categorical variables
|
30 |
+
df = pd.get_dummies(df)
|
31 |
+
|
32 |
+
return df
|
33 |
+
|
34 |
+
def split_data(df, target_column, test_size=0.2):
|
35 |
+
"""
|
36 |
+
Split the dataset into training and testing sets.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
df (pd.DataFrame): Preprocessed dataset.
|
40 |
+
target_column (str): Name of the target column.
|
41 |
+
test_size (float): Proportion of the dataset to include in the test split.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
X_train, X_test, y_train, y_test: Split datasets.
|
45 |
+
"""
|
46 |
+
X = df.drop(columns=[target_column])
|
47 |
+
y = df[target_column]
|
48 |
+
return train_test_split(X, y, test_size=test_size, random_state=42)
|