This model is pretrained on Chinese and Indonesian languages, and fine-tuned on Indonesian language.
Example
%%capture
!pip install transformers transformers[sentencepiece]
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Download the pretrained model for English-Vietnamese available on the hub
model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-mixed")
tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-mixed")
# Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it
# We used the one coming from the initial model
# This tokenizer is used to tokenize the input sentence
tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh')
# These special tokens are needed to reproduce the original tokenizer
tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True)
sentence = "The cat is on the table"
# This token is needed to identify the target language
input_sentence = "<2indo> " + sentence
translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True))
output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
Training results
MIXED
Epoch | Bleu |
---|---|
1.0 | 24.2579 |
2.0 | 30.6287 |
3.0 | 34.4417 |
4.0 | 36.2577 |
5.0 | 37.3488 |
FINETUNING
Epoch | Bleu |
---|---|
6.0 | 34.1676 |
7.0 | 35.2320 |
8.0 | 36.7110 |
9.0 | 37.3195 |
10.0 | 37.9461 |
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.