API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FCIS-5190-CIA%2FEnsamble"

from huggingface_hub import InferenceClient

client = InferenceClient(
    "CIS-5190-CIA/Ensamble",
    token="TOKEN HERE",
)

How to Run

In the notebook Run_ensamble.ipynb, replace the line:

dataset_test = load_dataset("gydou/released_img")

with the proper location of the testing dataset.

Training Dataset Statistics

lat_mean = 39.95173281562989 
lat_std = 0.0006925131397316982 
lon_mean = -75.19143805846498 
lon_std = 0.0006552266653111098

Helper Functions to Predict from & Evaluate Ensamble

These functions will allow you to use the ensamble to predict and evaluate the model

They use the following paramaters:

  • models: this is a dictionary of the models, in the format of:
    models = {
      "RNNModel1": CNNModel1(num_outputs=2).to(device),
      "RNNModel2": CNNModel2(num_outputs=2).to(device),
      "RNNModel3": CNNModel3(num_outputs=2).to(device),
    }
    
  • dataloader: this is the data loader provided to us for the project
  • lat_mean, lon_mean, lat_std, lon_std
def ensemble_predict(models, dataloader, lat_mean, lon_mean, lat_std, lon_std):
    model_outputs = []
    for model_name, model in models.items():
        model.eval()
        outputs = []
        with torch.no_grad():
            for images, _ in dataloader:
                images = images.to(device)
                outputs.append(model(images))
        model_outputs.append(torch.cat(outputs, dim=0))

    # average the predictions across all models
    ensemble_output = torch.stack(model_outputs, dim=0).mean(dim=0)

    # denormalize the ensemble predictions
    ensemble_output_denorm = ensemble_output.cpu().numpy() * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])
    return ensemble_output_denorm

# evaluate Ensemble with Geodesic Distance
def evaluate_ensemble(models, dataloader, lat_mean, lon_mean, lat_std, lon_std):
    ensemble_outputs = ensemble_predict(models, dataloader, lat_mean, lon_mean, lat_std, lon_std)

    all_targets = []
    for _, targets in dataloader:
        all_targets.append(targets)
    all_targets = torch.cat(all_targets, dim=0).cpu().numpy()
    all_targets_denorm = all_targets * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])

    total_samples = all_targets_denorm.shape[0]
    ensemble_loss = 0.0

    # compute Geodesic Distance Metrics
    for pred, actual in zip(ensemble_outputs, all_targets_denorm):
        distance = geodesic((actual[0], actual[1]), (pred[0], pred[1])).meters
        ensemble_loss += distance ** 2

    ensemble_loss /= total_samples
    ensemble_rmse = np.sqrt(ensemble_loss)
    return ensemble_loss, ensemble_rmse

Our Custom Models for the ensamble

We used the following 3 model architectures and then created the ensamble to create an output

Model 1:

class CNNModel1(nn.Module):
    def __init__(self, num_outputs=2):
        super(CNNModel1, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.BatchNorm2d(64),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.BatchNorm2d(192),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_outputs)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

Model 2:

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample:
            identity = self.downsample(x)
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out += identity
        out = self.relu(out)
        return out

class CNNModel2(nn.Module):
    def __init__(self, num_outputs=2):
        super(CNNModel2, self).__init__()
        self.in_channels = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(64, 2, stride=1)
        self.layer2 = self._make_layer(128, 2, stride=2)
        self.layer3 = self._make_layer(256, 2, stride=2)
        self.layer4 = self._make_layer(512, 2, stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_outputs)

    def _make_layer(self, out_channels, blocks, stride):
        downsample = None
        if stride != 1 or self.in_channels != out_channels:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride),
                nn.BatchNorm2d(out_channels)
            )
        layers = []
        layers.append(ResidualBlock(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for _ in range(1, blocks):
            layers.append(ResidualBlock(out_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

Model 3:

class InceptionModule(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_reduce, ch3x3, ch5x5_reduce, ch5x5, pool_proj):
        super(InceptionModule, self).__init__()
        self.branch1 = nn.Sequential(
            nn.Conv2d(in_channels, ch1x1, kernel_size=1),
            nn.ReLU(inplace=True)
        )
        self.branch2 = nn.Sequential(
            nn.Conv2d(in_channels, ch3x3_reduce, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch3x3_reduce, ch3x3, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )
        self.branch3 = nn.Sequential(
            nn.Conv2d(in_channels, ch5x5_reduce, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch5x5_reduce, ch5x5, kernel_size=5, padding=2),
            nn.ReLU(inplace=True)
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            nn.Conv2d(in_channels, pool_proj, kernel_size=1),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)
        outputs = torch.cat([branch1, branch2, branch3, branch4], 1)
        return outputs

class CNNModel3(nn.Module):
    def __init__(self, num_outputs=2):
        super(CNNModel3, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2)
        self.conv2 = nn.Conv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2)

        self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2)

        self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64)
        self.maxpool4 = nn.MaxPool2d(3, stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(512, num_outputs)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.inception3a(x)
        x = self.inception3b(x)
        x = self.maxpool3(x)
        x = self.inception4a(x)
        x = self.inception4b(x)
        x = self.maxpool4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.dropout(x)
        x = self.fc(x)
        return x
Downloads last month
0
Inference Examples
Inference API (serverless) does not yet support keras models for this pipeline type.