leaderboard-pr-bot's picture
Adding Evaluation Results
7fb6da3
|
raw
history blame
3.26 kB
metadata
license: llama2
datasets:
  - ehartford/dolphin

Model Card for Model ID

在llama-2-13b上使用dolphin前5萬筆資料集進行訓練

Fine-Tuning Information

  • GPU: RTX4090 (single core / 24564MiB)
  • model: meta-llama/Llama-2-13b-hf
  • dataset: ehartford/dolphin (取前5w筆訓練集)
  • peft_type: LoRA
  • lora_rank: 8
  • lora_target: q_proj, v_proj
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 8
  • learning_rate : 5e-5
  • epoch: 1
  • precision: bf16
  • quantization: load_in_4bit

Fine-Tuning Detail

  • train_loss: 0.8799
  • train_runtime: 7:11:23 (use deepspeed)

Evaluation

  • 評估結果來自HuggingFaceH4/open_llm_leaderboard
  • 與Llama-2-13b和其他使用dolphin的模型比較4種Benchmark
  • Benchmark包含ARCHellaSwagMMLUTruthfulQA
  • 注意:ehartford/dolphin-llama-13b使用的是llama-1
Model Average ARC HellaSwag MMLU TruthfulQA
meta-llama/Llama-2-13b-hf 56.9 58.11 80.97 54.34 34.17
meta-llama/Llama-2-13b-chat-hf 59.93 59.04 81.94 54.64 44.12
ehartford/dolphin-llama-13b 59.26 55.55 77.11 52.16 52.23
CHIH-HUNG/llama-2-13b-dolphin_20w 60.17 59.56 82.55 55.89 42.67
CHIH-HUNG/llama-2-13b-dolphin_5w 61 60.67 82.69 56.23 44.41

How to convert dataset to json

  • load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
  • 觀察該資料集的欄位名稱,填入example欄位中(例如instruction、input、output)
  • 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset

# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("ehartford/dolphin", split="train", streaming=True).take(50000)

# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
    extracted_example = {
        ### dolphin
        "instruction": example["instruction"],
        "input": example["input"],
        "output": example["output"]
    }
    extracted_data.append(extracted_example)

# 指定 JSON 文件名稱
json_filename = "dolphin.json"

# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
    json.dump(extracted_data, json_file, indent=4)

print(f"數據已提取並保存為 {json_filename}")

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 48.59
ARC (25-shot) 60.67
HellaSwag (10-shot) 82.69
MMLU (5-shot) 56.23
TruthfulQA (0-shot) 44.41
Winogrande (5-shot) 77.35
GSM8K (5-shot) 11.83
DROP (3-shot) 6.96