metadata
license: llama2
datasets:
- ehartford/dolphin
Model Card for Model ID
在llama-2-13b上使用dolphin前5萬筆資料集進行訓練
Fine-Tuning Information
- GPU: RTX4090 (single core / 24564MiB)
- model: meta-llama/Llama-2-13b-hf
- dataset: ehartford/dolphin (取前5w筆訓練集)
- peft_type: LoRA
- lora_rank: 8
- lora_target: q_proj, v_proj
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 8
- learning_rate : 5e-5
- epoch: 1
- precision: bf16
- quantization: load_in_4bit
Fine-Tuning Detail
- train_loss: 0.8799
- train_runtime: 7:11:23 (use deepspeed)
Evaluation
- 評估結果來自HuggingFaceH4/open_llm_leaderboard
- 與Llama-2-13b和其他使用dolphin的模型比較4種Benchmark
- Benchmark包含ARC、HellaSwag、MMLU、TruthfulQA
- 注意:ehartford/dolphin-llama-13b使用的是llama-1
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
---|---|---|---|---|---|
meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 |
meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 |
ehartford/dolphin-llama-13b | 59.26 | 55.55 | 77.11 | 52.16 | 52.23 |
CHIH-HUNG/llama-2-13b-dolphin_20w | 60.17 | 59.56 | 82.55 | 55.89 | 42.67 |
CHIH-HUNG/llama-2-13b-dolphin_5w | 61 | 60.67 | 82.69 | 56.23 | 44.41 |
How to convert dataset to json
- 在load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
- 觀察該資料集的欄位名稱,填入example欄位中(例如instruction、input、output)
- 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset
# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("ehartford/dolphin", split="train", streaming=True).take(50000)
# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
extracted_example = {
### dolphin
"instruction": example["instruction"],
"input": example["input"],
"output": example["output"]
}
extracted_data.append(extracted_example)
# 指定 JSON 文件名稱
json_filename = "dolphin.json"
# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
json.dump(extracted_data, json_file, indent=4)
print(f"數據已提取並保存為 {json_filename}")