Model Card for Model ID
在llama-2-13b上使用garage-bAInd/Open-Platypus資料集進行訓練,總資料筆數約2.5w + ccp
Fine-Tuning Information
- GPU: RTX4090 (single core / 24564MiB)
- model: meta-llama/Llama-2-13b-hf
- dataset: garage-bAInd/Open-Platypus (共約2.5w筆訓練集) + ccp (約1200筆)
- peft_type: LoRA
- lora_rank: 8
- lora_target: gate_proj, up_proj, down_proj
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 8
- learning_rate : 5e-5
- epoch: 1
- precision: bf16
- quantization: load_in_4bit
Fine-Tuning Detail
- train_loss: 0.67
- train_runtime: 4:07:24 (use deepspeed)
Evaluation
- 評估結果來自HuggingFaceH4/open_llm_leaderboard
- 與Llama-2-13b比較4種Benchmark,包含ARC、HellaSwag、MMLU、TruthfulQA
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
---|---|---|---|---|---|
meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 |
meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 |
Open-Orca/OpenOrca-Platypus2-13B | 63.19 | 61.52 | 82.27 | 58.85 | 50.11 |
CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w | 59.41 | 58.96 | 82.51 | 56.12 | 40.07 |
How to convert dataset to json
- 在load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
- 觀察該資料集的欄位名稱,填入example欄位中(例如instruction、input、output)
- 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset
# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("garage-bAInd/Open-Platypus", split="train", streaming=True)
# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
extracted_example = {
"instruction": example["instruction"],
"input": example["input"],
"output": example["output"]
}
extracted_data.append(extracted_example)
# 指定 JSON 文件名稱
json_filename = "Open-Platypus.json"
# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
json.dump(extracted_data, json_file, indent=4)
print(f"數據已提取並保存為 {json_filename}")
- Downloads last month
- 723
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.