canine_sent_2304v1

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0218 1.0 781 0.0051 0.9531 0.9434 0.9482 0.9980
0.0059 2.0 1562 0.0028 0.9712 0.9714 0.9713 0.9989
0.0043 3.0 2343 0.0018 0.9733 0.9980 0.9855 0.9994
0.0021 4.0 3124 0.0010 0.9873 0.9991 0.9932 0.9997
0.0018 5.0 3905 0.0005 0.9952 0.9984 0.9968 0.9998
0.0012 6.0 4686 0.0002 0.9988 0.9986 0.9987 0.9999
0.0007 7.0 5467 0.0001 0.9989 0.9986 0.9988 1.0000
0.0007 8.0 6248 0.0001 0.9998 0.9991 0.9995 1.0000
0.0004 9.0 7029 0.0000 0.9998 1.0 0.9999 1.0000
0.0004 10.0 7810 0.0000 0.9998 0.9995 0.9996 1.0000
0.0003 11.0 8591 0.0001 0.9996 0.9998 0.9997 1.0000
0.0002 12.0 9372 0.0000 1.0 0.9998 0.9999 1.0000
0.0002 13.0 10153 0.0000 1.0 0.9998 0.9999 1.0000
0.0001 14.0 10934 0.0000 1.0 0.9998 0.9999 1.0000
0.0001 15.0 11715 0.0000 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.