|
import os |
|
import numpy as np |
|
from shutil import copyfile |
|
|
|
|
|
|
|
|
|
input_path = './dataset/unprocessed/' |
|
output_path = './dataset/' |
|
eval_split_percent = 0.10 |
|
|
|
|
|
paths = [] |
|
for f in os.listdir(input_path): |
|
if f.find('.gui') != -1: |
|
file_name = f[:f.find('.gui')] |
|
if os.path.isfile('{}/{}.png'.format(input_path, file_name)): |
|
paths.append(file_name) |
|
|
|
|
|
eval_sample_number = int(len(paths) * eval_split_percent) |
|
np.random.shuffle(paths) |
|
eval_set = paths[:eval_sample_number] |
|
train_set = paths[eval_sample_number:] |
|
|
|
for path in eval_set: |
|
copyfile('{}/{}.png'.format(input_path, path), '{}/{}/{}.png'.format(os.path.dirname(output_path), 'evaluation', path)) |
|
copyfile('{}/{}.gui'.format(input_path, path), '{}/{}/{}.gui'.format(os.path.dirname(output_path), 'evaluation', path)) |
|
|
|
for path in train_set: |
|
copyfile('{}/{}.png'.format(input_path, path), '{}/{}/{}.png'.format(os.path.dirname(output_path), 'training', path)) |
|
copyfile('{}/{}.gui'.format(input_path, path), '{}/{}/{}.gui'.format(os.path.dirname(output_path), 'training', path)) |