File size: 1,256 Bytes
37bd60c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import numpy as np
from shutil import copyfile

# Raw html data in /dataset/unprocessed/.
# Have to create training and evaluation directories manually.

input_path = './dataset/unprocessed/'
output_path = './dataset/'
eval_split_percent = 0.10

# List of every datapoint filename
paths = []
for f in os.listdir(input_path):
    if f.find('.gui') != -1:
        file_name = f[:f.find('.gui')]
        if os.path.isfile('{}/{}.png'.format(input_path, file_name)):
            paths.append(file_name)

# Split the data in training and evaluation set
eval_sample_number = int(len(paths) * eval_split_percent)
np.random.shuffle(paths)
eval_set = paths[:eval_sample_number]
train_set = paths[eval_sample_number:]

for path in eval_set:
    copyfile('{}/{}.png'.format(input_path, path), '{}/{}/{}.png'.format(os.path.dirname(output_path), 'evaluation', path))
    copyfile('{}/{}.gui'.format(input_path, path), '{}/{}/{}.gui'.format(os.path.dirname(output_path), 'evaluation', path))

for path in train_set:
    copyfile('{}/{}.png'.format(input_path, path), '{}/{}/{}.png'.format(os.path.dirname(output_path), 'training', path))
    copyfile('{}/{}.gui'.format(input_path, path), '{}/{}/{}.gui'.format(os.path.dirname(output_path), 'training', path))