BilalMuftuoglu's picture
End of training
7204701 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-85-fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7272727272727273

deit-base-distilled-patch16-224-hasta-85-fold2

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0159
  • Accuracy: 0.7273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.3509 0.1818
No log 2.0 2 1.2094 0.1818
No log 3.0 3 1.0159 0.7273
No log 4.0 4 0.9047 0.6364
No log 5.0 5 0.9481 0.7273
No log 6.0 6 1.1337 0.7273
No log 7.0 7 1.2464 0.7273
No log 8.0 8 1.2335 0.7273
No log 9.0 9 1.1432 0.7273
0.4248 10.0 10 1.0979 0.7273
0.4248 11.0 11 1.1069 0.7273
0.4248 12.0 12 1.1633 0.7273
0.4248 13.0 13 1.1650 0.7273
0.4248 14.0 14 1.1332 0.7273
0.4248 15.0 15 1.1423 0.7273
0.4248 16.0 16 1.1208 0.7273
0.4248 17.0 17 1.0566 0.7273
0.4248 18.0 18 1.0348 0.7273
0.4248 19.0 19 1.0146 0.7273
0.1813 20.0 20 1.0062 0.7273
0.1813 21.0 21 1.0748 0.7273
0.1813 22.0 22 1.1673 0.7273
0.1813 23.0 23 1.2477 0.7273
0.1813 24.0 24 1.2457 0.7273
0.1813 25.0 25 1.1424 0.7273
0.1813 26.0 26 1.0439 0.7273
0.1813 27.0 27 0.9436 0.7273
0.1813 28.0 28 0.8254 0.7273
0.1813 29.0 29 0.7963 0.7273
0.1021 30.0 30 0.8055 0.7273
0.1021 31.0 31 0.7734 0.7273
0.1021 32.0 32 0.7069 0.7273
0.1021 33.0 33 0.7235 0.7273
0.1021 34.0 34 0.8200 0.7273
0.1021 35.0 35 0.8484 0.7273
0.1021 36.0 36 0.9380 0.7273
0.1021 37.0 37 1.0584 0.7273
0.1021 38.0 38 1.1803 0.7273
0.1021 39.0 39 1.2916 0.7273
0.0579 40.0 40 1.3442 0.7273
0.0579 41.0 41 1.3060 0.7273
0.0579 42.0 42 1.2349 0.7273
0.0579 43.0 43 1.1867 0.7273
0.0579 44.0 44 1.1411 0.7273
0.0579 45.0 45 1.2009 0.7273
0.0579 46.0 46 1.2366 0.7273
0.0579 47.0 47 1.2790 0.7273
0.0579 48.0 48 1.3573 0.7273
0.0579 49.0 49 1.4175 0.7273
0.0436 50.0 50 1.4130 0.7273
0.0436 51.0 51 1.4465 0.7273
0.0436 52.0 52 1.4372 0.7273
0.0436 53.0 53 1.4207 0.7273
0.0436 54.0 54 1.4134 0.7273
0.0436 55.0 55 1.4889 0.7273
0.0436 56.0 56 1.5351 0.7273
0.0436 57.0 57 1.5673 0.7273
0.0436 58.0 58 1.5803 0.7273
0.0436 59.0 59 1.5685 0.7273
0.0325 60.0 60 1.5487 0.7273
0.0325 61.0 61 1.4888 0.7273
0.0325 62.0 62 1.4026 0.7273
0.0325 63.0 63 1.2968 0.7273
0.0325 64.0 64 1.2915 0.7273
0.0325 65.0 65 1.3016 0.7273
0.0325 66.0 66 1.3871 0.7273
0.0325 67.0 67 1.5019 0.7273
0.0325 68.0 68 1.6563 0.7273
0.0325 69.0 69 1.8046 0.7273
0.028 70.0 70 1.9155 0.7273
0.028 71.0 71 1.9688 0.7273
0.028 72.0 72 1.9570 0.7273
0.028 73.0 73 1.8879 0.7273
0.028 74.0 74 1.8354 0.7273
0.028 75.0 75 1.7812 0.7273
0.028 76.0 76 1.6800 0.7273
0.028 77.0 77 1.5444 0.7273
0.028 78.0 78 1.4488 0.7273
0.028 79.0 79 1.3880 0.7273
0.0411 80.0 80 1.3544 0.7273
0.0411 81.0 81 1.3867 0.7273
0.0411 82.0 82 1.4348 0.7273
0.0411 83.0 83 1.4906 0.7273
0.0411 84.0 84 1.5685 0.7273
0.0411 85.0 85 1.6276 0.7273
0.0411 86.0 86 1.6793 0.7273
0.0411 87.0 87 1.7099 0.7273
0.0411 88.0 88 1.7182 0.7273
0.0411 89.0 89 1.7049 0.7273
0.0343 90.0 90 1.6831 0.7273
0.0343 91.0 91 1.6695 0.7273
0.0343 92.0 92 1.6584 0.7273
0.0343 93.0 93 1.6467 0.7273
0.0343 94.0 94 1.6294 0.7273
0.0343 95.0 95 1.6147 0.7273
0.0343 96.0 96 1.6055 0.7273
0.0343 97.0 97 1.6026 0.7273
0.0343 98.0 98 1.6043 0.7273
0.0343 99.0 99 1.6039 0.7273
0.021 100.0 100 1.6044 0.7273

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1